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ABSTRACT
Invariant sets are tools that are used in practice as terminal
sets for model predictive control (MPC) in order to ensure
stability. By enforcing the terminal state to lie inside an in-
variant set stability and feasibility with respect to the con-
straints can be ensured. In this work the main focus will go
to sets based on the L1-norm invariant for linear systems
with polytopic uncertainty description subject to input con-
straints. The paper first proposes a method to determine
an initial robustly feasible invariant set. This set is used
as starting point for an optimization scheme that increases
the volume of the set by solving a sequence of convex pro-
grams. A numerical example shows the efficiency of the
proposed methods.
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1 Introduction

The notion of invariant sets arises in many problems
concerning analysis of dynamical systems, controller
design and the construction of Lyapunov functions. An
overview of the concept of set invariance can be found
in the overview paper [4]. Typically invariant sets are
ellipsoidal or polyhedral as both sets are convex and
give raise to convex terminal constraints. Examples of
algorithms capable of determining ellipsoidal invariant sets
can be found in [3],[8] and [10]. Though ellipsoidal sets
scale well with the state dimension they have the drawback
they lead to the online solution of a SDP (semi-definite
programming) when used as terminal sets for an MPC
controller. Polytopic sets, however, consist of a set of
linear constraints and therefore lead to the online solution
of a QP (quadratic program) when used as terminal sets.
Therefore, the main focus of this work will go to polytopic
sets.

In [6] a method was proposed for constructing poly-
hedral invariant sets for linear time-invariant systems. The
proposed method constructs an invariant set by iteratively
adding additional constraints until invariance is obtained.
In [2] these results were extended towards uncertain linear
systems with polytopic model uncertainty. However, when
dealing with higher dimensional systems, these methods
could still lead to a large number of non-redundant con-
straints, making the algorithm impractical in these cases.
Therefore, in [1] an algorithm was introduced able to make
a trade-off between the number of constraints and the

volume of the invariant set. This resulted to an algorithm
that was capable to determine invariant sets for uncertain
linear systems in high dimensions.

The calculation of low complexity polytopes is an
approach that leads to sets that can be represented with a
number of constraints that scale linearly with the state di-
mension. In [9] an algorithm to determine low-complexity
invariant polytopes based on theL∞-norm for nonlinear
systems was proposed. Within an inclusion polytope the
nonlinear system was described as an uncertain linear
system for which a low-complexity polytope was derived
based on a vertex-based optimization approach. However,
vertex-based approaches are not suited for low-complexity
polytopes based on theL∞-norm because the number of
vertices increases exponentially with the state dimension.
Moreover, the proposed method consisted of an iterative
procedure that needed an initial robustly feasible invariant
set in order to start the optimization sequence. However,
no method to determine such a starting set was proposed
nor is such a method known in literature.

In this paper we consider the problem of constructing
robustly feasible invariant low-complexity polytopes based
on the L1-norm. These polytopes have the advantage
that the number of vertices scales linearly with the state
dimension. This property makes vertex-based optimization
schemes suited to determine invariantL1-norm based sets
for high dimensional systems. First a method is described
to find an initial robustly feasible invariantL1-norm based
set by solving a number of LMI’s. This set is than used
as a starting point for an optimization scheme that at
each iteration increases the volume of the resulting set by
solving a convex program. A numerical example compares
the methods proposed in this paper with the ones discussed
in [9] and shows that the methods in this paper outperform
those in [9].

This paper is organised as follows. In section 2 the
problem statement is presented. In section 3 a method is
described to determine an initial robustly feasible invariant
L1-norm based set for linear time-invariant systems as well
as for uncertain linear systems with polytopic uncertainty.
In the second part of section 3 a method is discussed
that increases the initial robustly feasible invariant setby
solving a sequence of convex programs. In section 4 the
proposed algorithms are applied on a numerical example
and compared with the methods in [9]. In section 5 some
conclusions and future directions are discussed.



2 Problem Description

In this work the main focus will go to uncertain discrete-
time systems of the following form:

xk+1 = Ãxk + B̃uk. (1)

with Ã and B̃ uncertain, possible time-varying
belonging to the polyhedral uncertainty class

(Ã, B̃) ∈ Co
{
(A1, B1), . . . , (Anp

, Bnp
)
}

. (2)

Constraints on the inputs are assumed to be convex

uk ∈ {u| |u| ≤ ū} (3)

with x ∈ R
nx×1 and u ∈ R

nu×1. The exten-
sion to state constraints and/or non-symmetric constraints
is straightforward and will not be discussed here.

The invariant sets are assumed to have the following
form:

ϕ = {x| ‖V x‖
1
≤ γ} (4)

Invariance of the uncertain system (1) under a linear
state feedbackK requires∀x ∈ ϕ and∀(Ã, B̃) ∈ Ω

∥∥∥V
(
Ã + B̃K

)
x
∥∥∥

1

≤ ‖V x‖
1
. (5)

It can be shown that it is sufficient to invoke condition
(5) on the vertices(Ai, Bi) of the polytopic uncertainty de-
scription

‖V (Ai + BiK)x‖
1
≤ ‖V x‖

1
, i = 1, . . . , np. (6)

However, the invariance conditions (6) only imply
Lyapunov stability. To improve the performance the invari-
ance conditions can be strengthened into

‖V (Ai + BiK)x‖
1
≤ α ‖V x‖

1
, i = 1, . . . , np. (7)

with α < 1. Condition (7) ensures assymptotic con-
vergence of the state as it can easily been shown that it leads
to:

∀x ∈ ϕ, i ∈ {1, . . . , np} : lim
k→∞

(Ai + BiK)
k
x = 0. (8)

Note that fornp = 1 the system (1) describes a lin-
ear time-invariant system, so the methods discussed in the
remainder of the paper are also applicable on this type of
systems.

3 Results

In this section the main algorithm is discussed. In the first
part the notionβ-contractive set is introduced and used in
order to determine an initial feasible invariant set solving a
sequence of LMI’s. In the second part this set is used as a
starting point for an algorithm that iteratively increasesthe
volume of the set ensuring feasibility and invariance of the
resulting set by solving a sequence of convex programs.

3.1 Initialization

In subsection 3.2 an iterative procedure is outlined in or-
der to determine an invariant set with maximum volume.
In order for the procedure to guarantee a feasible solution
at each iteration an initial feasible invariant set has to be
determined that can be used as a feasible starting point for
the procedure. In the sequel a method will be discussed to
find such a set. For a time-invariant linear system an initial
invariant set can be found by using the following theorem:

Theorem 3.1. For each linear feedback matrix K that sta-
bilizes the time-invariant systemxk+1 = Axk + Buk in
such a way that the eigenvaluesλi of A + BK are real the
vertices of an initial invariant set induced by the 1-norm
can be found as then eigenvectors ofA + BK.

Proof. The setϕ = {x| ‖V x‖
1
≤ 1} is invariant for

the time-invariant system if the corresponding verticesvi

satisfy‖V (A + BK)vi‖1
≤ ‖V vi‖1

. Supposevi is a real
eigenvector ofA + BK corresponding to a real eigenvalue
λi, than ‖V (A + BK)vi‖1

= |λi| ‖V vi‖1
. Since K is

stabilizing and the eigenvalues are assumed real this means
|λi| ≤ 1. Therefore‖V (A + BK)vi‖1

≤ ‖V vi‖1
and the

setϕ is invariant.�

Remark that if the linear time-invariant system is
stabilizable, it is always possible to find such a feedback
matrix K by choosing n stableλi and using the pole
placement method [5]. This procedure, however, cannot
be used for the time-variant system (1). In order to find an
initial invariant set for uncertain linear systems the notion
of robustlyβ-contractive set is introduced.

Definition 1. An ellipsoidal setE is called robustlyβ-
contractive for system (1) if and only if∀x ∈ E and
∀(Ã, B̃) ∈ Co

{
(A1, B1), . . . , (Anp

, Bnp
)
}

it follows that

(Ã + B̃K)x ∈ βE .

Remark 1. From the definition it follows that a robustly
β-contractive set is also invariant for the uncertain system
(1).

The following theorem uses this notion in order to
determine robustly invariant L1-norm based sets for linear
systems with polytopic uncertainty:



Theorem 3.2. Consider the robustlyβ-contractive el-
lipsoidal set E = {x| ‖V x‖

2
≤ γ}. The setϕ =

{x| ‖V x‖
1
≤ γ} is robustly invariant for system (1) w.r.t.

the state feedbackK if the following condition is satisfied:

βE ⊆ ϕ ⊆ E (9)

∀(Ã, B̃) ∈ Co
{
(A1, B1), . . . , (Anp

, Bnp
)
}

.

Proof. From the property‖x‖
1
≥ ‖x‖

2
it follows that

‖V x‖
1
≥ ‖V x‖

2
. Therefore, ifx ∈ ϕ ⇒ x ∈ E meaning

thatϕ ⊆ E . SinceE is β-contractive andϕ ⊆ E it follows
∀x ∈ ϕ that(Ã + B̃K)x ∈ βE . If βE ⊆ ϕ than the setϕ
is invariant because(Ã + B̃K)x ∈ βE ⊆ ϕ. �

Remark 2. Theorem 9 provides sufficient (not necessary)
conditions for invariance of the setϕ.

The following set of LMI’s determines a robustlyβ-
contractive set ([3],[8] and [10]):

Algorithm 1.
min

Q,X,Y
−log det(Q) (10)

subject to

Q � 0 (11)

[
X Y

Y T Q

]
� 0, X(j, j) 6 ū2 , j = 1, . . . , nu

(12)

[
β2Q (AiQ + BiY )T

AiQ + BiY Q

]
� 0, j = 1, . . . , np

(13)

By taking P = Q−1 and K = Y Q−1 a feedback
is obtained stabilizing the uncertain system (1) in such a
way that the ellipsoidal setE =

{
x|

∥∥P 0.5x
∥∥

2
≤ 1

}
is β-

contractive invariant and satisfies the input constraint (3).
Note that the vertices of the corresponding L1-norm set
ϕ =

{
x|

∥∥P 0.5x
∥∥

1
≤ 1

}
lie on the boundary of the ellip-

soidal setE . It is easy to see that for a sufficiently small
contraction rateβ the setϕ satisfies the conditions of The-
orem 3.2 and is robustly invariant. Therefore, in order to
determine an initial robustly feasible invariant set for the
uncertain linear system (1) the following strategy is pro-
posed:

1. Initializeβ = β0 with β0 < 1.

2. Solve the LMI of algorithm 1.

3. If the solution satisfies condition (9) a robustly
feasible invariant set is obtained. If the condition is
not satisfied decreaseβ and go back to step 2.

This iteration is needed because it is not clear how to
determine the upper bound̄β that ensures for eachβ ≤ β̄

that the1-norm setϕ resulting from algorithm1 is invari-
ant.

3.2 Maximal Robustly Feasible Invariant Set

The low-complexity polytope described in (4) consists of
2n vertices. The setϕ is completely determined by then
linearly independent primary verticesv1, . . . , vn. All other
vertices can be expressed in terms of{v1, . . . , vn} as fol-
lows:

vi = −vi−n, i = n + 1, . . . , 2n. (14)

At each vertex the following relation holds

V vi = ei, i = 1, . . . , n (15)

V vi = −ei, i = n + 1, . . . , 2n (16)

with ei thei-th column of the identity matrix. There-
fore following relation holds betweenV and the primary
vertices

V =
[

v1 . . . vn

]
−1

. (17)

From [7] it can easily been shown that the volume
of the set (4) is proportional to|det(V )|. Note that the
number of vertices scales linearly with the state dimen-
sion, in contrary to the low-complexity polytopes described
in [9] which have an amount of vertices that increase ex-
ponentially with the state dimension. Therefore, combin-
ing vertex-based approaches with sets of the form (4) lead
to algorithms that scale linearly with the state dimension.
The following theorem concerns a vertex-based optimiza-
tion scheme in order to determine maximal volume feasible
invariant sets of the form (4).

Theorem 3.3. The maximum feasible invariant low-
complexity polytope is the solution of the nonlinear pro-
gram:

min
v1,...,vn,w1,...,wn

− log
(∣∣det

([
v1 . . . vn

])∣∣) (18)

subject to the following equations forj = 1, . . . , np:

Aj

[
v1 . . . vn

]
+ Bj

[
w1 . . . wn

]
=

[
v1 . . . vn −v1 . . . −vn

]
Qj

(19)

|wi| ≤ ū (20)[
1T 1T

]
Qj = 1T (21)

Qj ≥ 0 (22)



with 1 =
[

1 . . . 1
]T

∈ R
n. The corresponding

stabilizing feedback K can be obtained as

K =
[

w1 . . . wn

] [
v1 . . . vn

]
−1

. (23)

Proof
Condition (19) together with (21)-(22) ensure

the resulting set is invariant. To see this note that
column p of constraint (19) can be re-written as

Avp + Bwp =
n∑

i=1

Qj(i, p)vi +
n∑

i=1

Qj(n + i, p)(−vi).

Because (22) ensuresQj(i, p) ≥ 0 and (21) ensures
2n∑
i=1

Qj(i, p) = 1 this means thatAjvp + Bjwp ∈

Co{v1, . . . , vn,−v1, . . . ,−vn} and the set is invari-
ant. Condition (20) ensures the input constraints
are satisfied. Expression (23) follows trivially from[

w1 . . . wn

]
= K

[
v1 . . . vn

]
. �

The program of Theorem 3.3 is nonlinear due to the
nonlinear cost function (18) and the bilinear invariance
constraints (19). However, by introducing some conserv-
ativeness it is possible to recast this problem into a convex
programming problem as stated below.

Theorem 3.4. The nonlinear program of Theorem 3.3 can
be computed by solving the following convex program iter-
atively:

min
v1, . . . , vn, w1, . . . , wn

Q1, . . . , Qnp

a1, . . . , an

n∑

i=1

− log ai (24)

subject to the following linear constraints fori =
1, . . . , n, j = 1, . . . , np

Aj

[
v1 . . . vn

]
+ Bj

[
w1 . . . wn

]
= (25)

[
v0
1 . . . v0

n −v0
1 . . . −v0

n

]
Qj (26)

[
v1 . . . vn

]
= (27)

[
v0
1 . . . v0

n

]



a1 0T 0

0
. . . 0

0 0T an


 (28)

|wi| 6 u (29)[
1T 1T

]
Qj = 1T (30)

Qj ≥ 0 (31)

a1, . . . , an ≥ 1 (32)

with 0 =
[

0 . . . 0
]T

∈ R
n−2 and the ro-

bustly invariant feasible set
{
v0
1 , . . . , v

0
n,−v0

1 , . . . ,−v0
n

}

computed at the previous iteration.

Proof.

Similar to the proof of Theorem 3.3 conditions (26),
(30)-(31) ensure for eachp = 1, . . . , 2n :

Ajvp + Bjwp ∈ Co
{
v0
1 , . . . , v

0
n,−v0

1 , . . . ,−v0
n

}
. (33)

In order for condition (33) to guarantee invariance it
is necessary thatCo

{
v0
1 , . . . , v0

n,−v0
1 , . . . ,−v0

n

}
⊆

Co {v1, . . . , vn,−v1, . . . ,−vn}. This is ensured
by condition (28). To see this note that (28) is
equivalent to 1

ap

vp = v0
p. Condition (32) ensures

1 ≥ 1

ap

≥ 0. It can easily be shown that for

each p = 1, . . . , n there existλp
1, λ

p
2 ≥ 0 such that

v0
p = λ

p
1vp + λ

p
2(−vp) with λ

p
1 − λ

p
2 = 1

ap

and

λ
p
1 + λ

p
2 = 1. Therefore, it is ensured thatv0

p ∈
Co {v1, . . . , vn,−v1, . . . ,−vn}. Because this holds for
all p it is ensured thatCo

{
v0
1 , . . . , v0

n,−v0
1 , . . . ,−v0

n

}
⊆

Co {v1, . . . , vn,−v1, . . . ,−vn}. Condition (29) ensures
the input constraints are satisfied. From condition (28)

follows that
∣∣det

([
v1 . . . vn

])∣∣ ∼
n∏

i=1

ai. Therefore

the cost function (24) ensures the volume of the set
Co {v1, . . . , vn,−v1, . . . ,−vn} is maximized.�

Remark 3. The feedback gainK is recoverable from the
solution for{vi, wi, i = 1, . . . , n} via (23).

Remark 4. The initialization procedure of subsection 3.1
provides a feasible starting point for the procedure of The-
orem 3.4. Therefore, Theorem 3.4 generates a sequence of
feasible robustly invariant sets with nondecreasing volume.

4 Numerical Example

In this section a numerical example is used to compare the
efficiency of the algorithm described in Theorem 3.4 with
the algorithm discussed in [9]. In [9] an iterative sequence
of LP’s is proposed in order to find the maximal volume
robustly feasibleL∞-norm based invariant set. However,
with some minor modifications these results can easily be
extended toL1-norm based sets. The uncertain model in
this example is the same as the one discussed in [2]. The
model and constraints are given by:

A1 =

[
1 0.1
0 1

]
, B1 =

[
0
1

]
,

A2 =

[
1 0.2
0 1

]
, B2 =

[
0

1.5

]
,

(34)

u = 1. (35)

Using the results of subsection 3.1 an initial robustly
feasible invariant polytopic set is obtained that is depicted
in figure 1, together with the corresponding ellipsoids. The
trajectories of the vertices of the polytopic setS1 are also
depicted and clearly show the set is robustly invariant. El-
lipsoid E1 =

{
x|xT Px 6 1

}
contracts in the next time



Figure 1. Initial robustly feasible invariant polytope.
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step into ellipsoidE2 =
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. From the

figure it can be seen clearly thatE2 ⊆ S1 ⊆ E1 which
corresponds to the invariance condition (9). The primary
vertices of the setS1 are:

v1 =

[
0.44
−0.57

]
v2 =

[
−0.57
2.44

]
(36)

and the corresponding feedbackK for which the sys-
tem stays insideS1 is

K =
[
−1.555 −0.764

]
. (37)

Note that the input constraints are satisfied. The de-
termined contraction rateβ is equal to0.7.

The matrixP determining the ellipsoidsE1 andE2 is

P =

[
11.25 2.97
2.97 0.94

]
. (38)

Figure 2 depicts the resulting set after applying the
volume maximization of Theorem 3.4 on the initial feasible
set. The obtained optimal solution is the setS2. The paths
of the vertices are also depicted in the figure and show the
set is robustly invariant. The primary vertices of the setS2
are

v1 =

[
6.2
−8

]
, v2 =

[
−1.1
4.4

]
(39)

and the corresponding feedback is

K =
[
−0.213 −0.280

]
. (40)

Therefore the inputs of the system are equal to

Figure 2. Maximal robustly feasible invariant polytope ob-
tained with the algorithm described in Theorem 3.4.
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w1 = 0.9, w2 = −1.0 (41)

and satisfy the input constraints. Also note that ex-
tending the iterative LP sequence specified in [9] to L1-
norm based sets does not increase the volume of the initial
invariant setS1 showing that the algorithm in Theorem 3.4
outperforms that of [9].

5 Conclusion

5.1 Conclusion

A strategy is proposed to find an initial robustly feasible
invariant low-complexity polytope based on theL1-norm
for linear time-invariant systems as well as for uncertain
linear systems with polytopic uncertainty subject to input
constraints. This set is used as starting point in an iterative
procedure that increases the volume of the set by solving
a sequence of convex programs. The main advantage of
the proposed method is that the number of vertices of the
proposed low-complexity polytope scales linearly with the
state dimension. Therefore, the vertex-based optimization
approach of this paper makes it possible to calculate
invariant low-complexity polytopes for high dimensional
systems. The efficiency of the methods were shown with a
numerical example. The example showed that the methods
in this work outperform that of [9].

5.2 Future Works

The strategy proposed in this paper in order to determine
an initial robustly feasible invariant1-norm set consists



in solving an iterative sequence of LMI’s trying to find a
β ≤ β̄ such that invariance of the1-norm set is guaranteed.
However, if β̄ could be determined in advance an initial
invariant set could be found solving just1 LMI for β = β̄

and therefore speeding up this initialization step. Also
conditions must be found for which it is guaranteed the
LMI of algorithm 1 returns a feasible solution forβ = β̄.
In a next step the volume maximization algorithm could
be modified. By chosing a different type of conservatism
a new sequence of convex programs might be developed
leading to possibly bigger invariant sets. Also extending
these results to systems with bounded disturbances could
be a future research direction.
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