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Abstract  

Motivation: Transcriptome analysis allows to detect and to cluster genes that are co-expressed under various 
biological circumstances. Under the assumption that coregulated genes share cis-acting regulatory elements, 
it is important to investigate the upstream sequences controlling the transcription of these genes. To improve 
the robustness of the Gibbs sampling algorithm to noisy data sets we propose an extension of this algorithm 
for motif finding with a higher-order background model.  
Results: Simulated data and real biological data sets with well-described regulatory elements are used to test 
the influence of the different background models on the performance of the motif detection algorithm. We 
show that the use of a higher-order model considerably enhances the performance of our motif finding 
algorithm in the presence of noisy data. For Arabidopsis thaliana, a reliable background model based on a 
set of carefully selected intergenic sequences was constructed.  
Availability: Our implementation of the Gibbs sampler called the Motif Sampler can be used through a web 
interface: http://www.esat.kuleuven.ac.be/~thijs/Work/MotifSampler.html. 
Contact: {gert.thijs,yves.moreau}@esat.kuleuven.ac.be 
Keywords: motif finding, Gibbs Sampling, gene regulation, higher-order background model  

http://www.esat.kuleuven.ac.be/thijs/Work/MotifSampler.html
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Introduction  
Recent high-throughput techniques to monitor gene expression levels constitute an important advance in the 
identification of co-expressed genes (for a review, see Lockhart and Winzeler 2000). The commonly 
accepted assumption that coregulated genes share similarities in their regulatory mechanism has lead to a 
major challenge for the computational biologist: detecting novel regulatory elements (motifs) in such sets of 
co-expressed genes (Brazma and Vilo. 2000; Bucher 1999; Chu et al. 1998; DeRisi et al. 1997; Spellman et 
al 1998; Wolfsberg et al. 1999; Zhang 1999). These similarities at transcriptional level imply that the 
promoter region might contain consensus motifs recognized by the same regulatory proteins. In the upstream 
regions of such sets of coregulated genes, the common consensus motifs are statistically over-represented as 
compared to their frequency in a background set (of non-coregulated genes). 
Several methods to search for over-represented motifs in the upstream region of a set of coregulated genes 
have been developed and tested (Ohler and Niemann 2001). These methods can be divided in two major 
classes: methods based on word counting (Jensen and Knudsen 2000; Vanet et al. 2000; van Helden et al. 
1998; van Helden et al. 2000) and methods based on probabilistic sequence models (Bailey and Elkan 1995; 
Hughes et al. 2000; Lawrence et al. 1993; Liu et al. 1995; Neuwald et al. 1995; Roth et al. 1998; Workman 
and Stormo 2000). Word counting methods are based on the frequency analysis of oligonucleotides in the 
upstream sequences. Over-representation is measured by comparing the counted number of occurrences of a 
word to the expected number of occurrences. A common motif is then compiled by grouping similar words. 
In the probabilistic methods, the motif model is represented as a position probability matrix and the motif is 
assumed to be hidden in a noisy background sequence. To find the parameters of such a model, maximum 
likelihood estimation is used. The most frequent methods to do so are Expectation Maximization (EM) and 
Gibbs Sampling. EM is a maximum likelihood algorithm for estimating the parameters of a probabilistic 
model. Gibbs Sampling is a stochastic equivalent of EM.   
The drawback of these algorithms is that they tend to be sensitive to noise. Noise is due to the presence of 
upstream sequences in the data set that do not contain the motif. These sources of noise have either an 
experimental origin or are artefacts of the clustering process and are difficult to avoid. 
Another source of noise comes from the large size of the upstream sequences of the selected genes as 
compared to the small size of the motifs. Parts of the sequence not containing a motif can indeed be 
considered as noise. This second source of noise obviously depends on the compactness of the genome. For 
higher eukaryotes, the size of intergenic regions varies considerably between organisms, being much larger 
on average in humans than in A. thaliana. Even within the same specie the size of the intergenic region can 
vary (e.g. by at least 2 orders of magnitude for A. thaliana, from <102 to >104 (Pavy et al. 1999)). Therefore 
the influence of the noise can be expected to be reasonably low for bacteria and still limited for lower 
eukaryotes such as yeast, but more pronounced for higher eukaryotes. 
Conceivably, it is important to have a motif detection algorithm that can cope with this noise and 
discriminate between motifs that are over-represented by chance and motifs that are biologically functional. 
An improved background model (model of non coregulated genes) can considerably improve this 
discrimination. 
The most popular probabilistic models published so far (Bailey and Elkan 1995; Hughes et al. 2000; 
Lawrence et al. 1993; Liu et al. 1995; Neuwald et al. 1995; Roth et al. 1998) use a simple background model 
based on the frequency of the nucleotides A, C, G, and T in the data set to represent an intergenic sequence. 
However, a background model solely based on single nucleotide frequencies poorly reflects the complex 
structure of genome sequences. A description of DNA sequences as higher-order Markov chains on the other 
hand has been used in most of the state-of-the-art gene recognition software to represent coding and non-
coding regions, (e.g., in Glimmer and the A. thaliana specific GlimmerA (Delcher et al. 1999), HMMgene 
(Krogh 1997) and GeneMark.hmm (Lukashin and Borodowsky 1998)). In this paper we describe the 
extension of the Gibbs sampling algorithm with a complex context-dependent background model.  
Recently other researchers have also proposed to use advanced background models in the Gibbs sampling 
algorithm (Liu et al. 2001; McCue et al. 2001). Here we like to address the specific issues associated with the 
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background models used in these methods. McCue et al. (2001) extended the Gibbs sampler with a position 
specific background model estimated with a Bayesian segmentation algorithm that was presented by Liu and 
Lawrence (1999). This model tries to capture the varying GC and AT-content of the different regions in 
DNA sequences. The model parameters and corresponding change points are found using a Bayesian 
sequence segmentation algorithm that maximizes the joint likelihood of the data, parameters and missing 
values (change point positions). These model parameters can be used to calculate the probability that a 
certain site in the sequence is generated with this background model. Furthermore, Liu and Lawrence have 
situated the problem of sequence alignment within a Bayesian framework that we also favour. Liu et al. 
(2001) have developed an extended version of the Gibbs sampler called BioProspector. They have proposed 
to use a context-depend Markov model to represent the probability that a site is generated by the background 
model. We will comment on some of the specific technicalities of this method in the next section.  
Together with the development of the algorithm a selected data set of intergenic sequences from A. thaliana 
was used to construct a reliable higher-order background model of gene upstream regions of this model 
plant. The influence of different background models on the robustness of the motif sampler in the presence 
of noisy data was exhaustively tested. We will describe the construction of the background models and the 
use of this background model with the Gibbs sampling algorithm. To test the influence of these models, we 
used simulated data and several well-described data sets of genes from A. thaliana for which different motifs 
are documented.  
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Higher-order background model 
As stated in the introduction, most of the state-of-the-art gene detection software uses a context dependent 
model based on a higher-order Markov process to represent DNA sequences. Based on the rationale of these 
algorithms, the use of such a model to detect motifs in the upstream region of coregulated genes seems a 
logical decision. Using a context-dependent model of order m means that the probability of finding a 
nucleotide b at position l in a sequence depends on the m previous nucleotides in the sequence. The 
probability of the sequence being generated by this background model Bm is given by: 
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 are stored in a transition matrix and the prior frequency of the 
oligonucleotides of length m is given by )( 21 mbbbP � . The construction of the transition matrix of an mth-order 
background model is based on the counting of all oligonucleotides of length (m+1) in the data set. To 
compensate for zero occurrences of certain oligonucleotides a pseudocount is added. Based on Bayesian 
statistics, we assume that the more data are available the more we can rely on these data to approximate the 
true biological model. Based on the comparison of experimental results, the pseudocounts are chosen 
proportional to the single nucleotide frequency and inverse proportional to the square root of the size of the 
data set. 
The background model can be either constructed based on the input sequences or based on an independent 
data set of intergenic sequences.  The latter approach seems the more sensible one to produce a reliable 
background model. The quality of the background model depends on the quality of the data set. In this paper 
a set of carefully selected intergenic sequences from A. thaliana is used to construct a reliable background 
model.  
  
Extension of the motif sampler 
The implementation of our motif finding algorithm is based on the original Gibbs sampling algorithm 
previously described by Lawrence et al. (1993). An elaborate description of our algorithm is given elsewhere 
(Thijs et al. 2001). In this paper we like to emphasize the specific aspects of the higher–order model and we 
will only summarize the aspects of the algorithm to facilitate further understanding. 
The calculation of the background model is done as an initialisation step of the algorithm. The background 
model Bm is computed either from the input sequences, making it useful for any organism, or from an 
independent dataset. This model Bm is not updated during the algorithm since there is no need to re-estimate 
the background model at each iteration step of the algorithm. The background model will be used to 
calculate for each site x of length W in a sequence the probability that this site was generated by the 
background model. This probability is referred to as Px: 
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The motif of length W is represented with a position probability matrix θW where the entry qi,b contains the 
probability of finding nucleotide b at position i in the motif: 

�
�
�
�

�

�

�
�
�
�

�

�

=

TWTT

GWGG

CWCC

AWAA

W

qqq
qqq
qqq
qqq

,,2,1

,,2,1

,,2,1

,,2,1

�

�

�

�

θ . 

For each site x of length W in a sequence the probability Qx of site x being generated by the motif model θW 
is calculated:  
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Based on these probabilities a weight Ax is then assigned to each segment x in the sequence  
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Subsequently the alignment vector of the motif in this sequence is sampled according to the distribution of 
normalized weights Ax. By updating this distribution we can find the alignment that maximizes the ratio of 
the corresponding site probability to the background probability.  
As stated in the introduction, Liu et al. (2001) have also proposed to use a context-depend Markov models in 
a Gibbs sampling algorithm. In their algorithm the probability of a site being generated by this background 
model is computed as  

)|()|()|()|()()( 4321213121121 −+−+−+−+++++++−+++ = WlWlWlWlllllllllllWllll bbbbPbbbbPbbbPbbPbPbbbbP ��  
This approach resembles the one proposed in this paper but differs in the calculation of the probability of the 
site being generated by the background model. In our algorithm we take the m preceding bases of the site 
into account to compute the background probability of the site since the complete sequence information is 
available at the time of computation. This also means that we only need to compute the parameters of the 
mth-order background model and not the parameters for all the models from 1 to m.   
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Data Sets 
Intergenic data set  
To construct the best possible representation of promoter sequences or intergenic sequences a data set 
consisting of carefully selected intergenic sequences was constructed, following a previously described 
rationale to build Araset (Pavy et al. 1999). To define clean intergenic sequences, all complete cDNAs were 
downloaded through SRS and aligned on BAC sequences. The aligned genes were manually checked by an 
expert (S. Aubourg, personal communication). Each time the cDNAs matched two consecutive genes on the 
BAC, the intergenic sequence was extracted. The sequences with a length below 10 kb were then extensively 
checked for any unannotated potential coding sequences, using BLAST (Altschul et al. 1990) for homology 
searches and prediction software such as EuGène (Schiex et al. 1999). 78 intergenic sequences were 
retained, representing a total of 156.087 bp. These sequences were added to the 94 intergenic sequences 
retrieved from Araset, resulting in a data set with 341.248 bp. Figure 1 shows the three different 
configurations in which neighboring genes can occur. 105 sequences have the first configuration (1) 
consisting of two genes coding in tandem on the same strand. In this case the intergenic region is expected to 
contain only one promoter. 38 sequences have the second configuration (2) where both genes are pointing 
away from each other. In this intergenic region divergent promoters are expected to control transcription. In 
the last case (containing 29 sequences) the transcription of the two genes is convergent. No promoter 
regulatory element is expected to occur in the intergenic region. The transition matrix was only built from 
the intergenic sequences of the classes (1) and (2), which likely contain either one or two promoters.  
 
Data sets for testing  
To test the performance of our implementation we constructed several data sets. The data sets are accessible 
on the web: http://www.plantgenetics.rug.ac.be/~males/Datasets/Data.html.  
• Simulated data: These sequences were used to test the influence of the background model on the detection 

of different types of motifs. By sampling according to the 4th-order background model 20 sequences of 
500bp were generated. In several tests, instances of predefined motifs were inserted in these sequences at 
random positions.  

• G-box sequences: This set of sequences was extracted from PlantCARE (Rombauts et al. 1999) and 
contains the upstream region of genes that are known to be regulated by G-box binding proteins in 
dicots. The consensus of the G-box is CACGTG. The position of the G-box is well defined in this data 
set. The set contains 33 sequences of 500bp. The G-box (CACGTG) is a well-conserved ubiquitous cis-
acting regulatory element found in plant genomes and is bound by the GBF (G-box binding factors) 
family of bZIP proteins (Donald and Cashmore 1999). 

• Light induced: This set contains the upstream region of 28 co-expressed A. thaliana genes. Co-expression 
was based on the cluster analysis of a microarray experiment (Desprez et al. 1998).  

• Random: Set of randomly selected A. thaliana upstream sequences of at least 150 bp, not described to be 
involved in light regulation and not containing a known G-box. 

  
 

http://www.plantgenetics.rug.ac.be/~males/Datasets/Data.html
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Results 
Construction of an independent background model 
The construction of a Markov process can rely either on the upstream sequences from the input data or from 
an independent data set. This independent data set consists of a well-defined set of intergenic regions of 
A. thaliana genes (see Data Sets). It should be noted that the number of nucleotides used to construct the 
Markov model limits the order of the background model that can be used. Indeed, when a transition matrix of 
order m is constructed, all oligonucleotides of length (m+1) are counted. The number of possible different 
oligonucleotides equals 4m+1 and increases exponentially with m. The data set used for the construction of the 
background model should, under the assumption of an equal nucleotide distribution, at least contain 4m+1 
different base pairs to have a single count for each nucleotide. In reality the assumption of equal nucleotide 
distribution does not hold and a much larger data set will be needed. When an oligonucleotide does not occur 
in the data set, it will be replaced by a pseudocount. When the order of the background is too high relative to 
the size of the data set on which this background model was based, less frequent motifs will be encountered 
which deteriorates the motif model. Following this reasoning the improvement of using a Markov chain 
background model will be more explicit when its construction is based on a large data set (such as the one 
used in this study). A thorough study of the intergenic data set shows that when all hexamers are counted, 
there are 430,388 examples in this data set. The hexamer with highest number of occurrences, 2018, was 
AAAAAA, while there was no instance at all found of the hexamer GCGGGC. The consequence of this 
observation is that the 5th-order background model is less reliable, as will be shown in the tests. 
 
Simulated sequences 
As a first set of tests, simulated sequences were used. The sequences were generated according to the 4th-
order background model. Although random generated sequences do not fully resemble biological sequences, 
the use of the 4th-order model ensures the conservation of the pentamer composition of the sequences as 
compared to the composition of the intergenic data set. This also means that these simulated sequence are 
AT-rich. Subsequently the different motifs were inserted at random positions throughout the sequences. 
Motifs were represented with a position probability matrix and each base of a created instance is sampled 
according to the distribution in the corresponding column of the matrix. Distinct types of motifs can be 
observed: AT-rich versus GC-rich and well conserved versus more degenerate. Using this simulated data sets 
we are able to test the influence of the different background models on the rate of detecting the inserted 
motifs. 
In a first set of tests we included all 4 types of motifs in 20 sequences of 500bp. Figure 2 gives an overview 
of the logos of the 4 created motifs based on the inserted instances. We tried several parameter settings and 
the best results were obtained when searching for 6 different motifs with a length of 14bp that can have 0, 1 
or 2 copies. Since our method is probabilistic, each test was repeated 20 times. Table 1 indicates for the 
different types of the background model how many times the corresponding consensus term was found in the 
20 repeated runs. The background model was computed from either the input sequences or the precompiled 
intergenic models.  
The first motif, GCTGCAGC, a well-conserved, GC-rich motif was easily found with each of the 
background model used, except with the 3rd-order model based on the input sequences. To explain this 
phenomenon we plotted in Figure 3 the transition matrices of the two 3rd-order background models. Each 
point in the plot corresponds to the same entry in both transition matrices. The x-axis shows the value for the 
matrix based on the intergenic sequences while the value for the matrix based on the input sequences is 
depicted on the y-axis. For a perfect 3rd-order background model a one-to-one correspondence is expected, 
however some outliers are clearly visible. For these points the corresponding representation of the entry in 
the transition matrix is indicated. The points that are largely over-estimated by the background model based 
on the input sequences correspond to the words part of the inserted GC-rich motifs. Therefore, the computed 
background model based on the input sequences is biased towards this motif and thus it will over-estimate Px 
for these sites.  
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The second inserted motif is a frequent, short, well-conserved and AT-rich motif: TAGAATA. When using 
the single nucleotide background model the motif was only found in 50% of the runs, while it was found in 
all 20 runs when using the intergenic either the 3rd or 4th-order models. Finding a short AT-rich motif seems 
to be much harder when using the single nucleotide model. Even when searching for shorter motifs (8bp) it 
was picked up less frequent with the single nucleotide model.  
The third motif consists of two GC-rich blocks and it has a fixed gap of 3bp. This motif was retrieved with 
the same consistency for all background models except when the background models were compiled from 
the input sequences. In this case there is no difference between the higher order models and the single 
nucleotide models. We repeated this test also with a data set where only this degenerated GC-rich motif was 
inserted and there the same consistent performance was observed. 
Finally a rather degenerate, AT-rich motif, resembling the background, was inserted. This motif is assumed 
to be the hardest to find. Using the single nucleotide background model resulted in a fairly poor performance. 
The motif was detected only in 3 or 4 out of 20 runs. Using higher-order background models, the motif was 
more frequently found. This effect was even more pronounced when we inserted only this degenerated motif 
in the random sequences. The number of detections with the single nucleotide model increased to 6 out of 20 
runs, but for the 3rd-order model this was 18 out of 20 and even 20 out of 20 runs for the 4th-order model. To 
further test this difficult case we inserted slightly modified versions of this motif, TTAAwCwATA and 
wTAATsTATA, in the generated sequences. In these two test cases we only used the intergenic background 
models. Again a similar performance was measured, as is shown in Table 2. Using the single nucleotide 
model it is difficult to retrieve the inserted motifs, while using the higher-order models significantly 
improves the performance.   
In this section we described the analysis of several tests with simulated data. Although the simulated data do 
not fully resemble biological sequences, we still can draw some conclusion from these tests. It was shown in 
these tests that the use of higher order background model, compiled from an intergenic data set, improves the 
rate of detection of difficult motifs as compared to the use of a single nucleotide model. The results show 
that the 3rd and 4th-order models based on the intergenic data set have the most positive influence on the 
detection of distinct motifs. The effect of the 1st and 2nd-order models is less pronounced. The 5th-order 
model on the other hand has in some cases a rather poor performance. This is due to the fact that the 
transition matrix is build by counting hexamers. As was shown in the section about the construction of the 
background model this count is not reliable enough. The influence of using the intergenic data set instead of 
using the input sequences is obvious especially for the 3rd-order model. However we should take the 
necessary care when interpreting the results in Table 1 and 2. These results show that tests with the 4th-order 
model have the best results, but this is possibly related to the fact that this background model was used to 
generate the sequences.   
 
Influence of noisy sequences 
To test the influence of the complex background model on the robustness of the motif sampler in the 
presence of noise, another set of tests was performed. In this set of tests we used a set of biologically relevant 
sequences upstream of 33 genes (G-box data set, see Data Sets). In subsequent tests, the number of noisy 
sequences added to the G-box data set was progressively increased (10 at the time). The set of noisy 
sequences, from which each time 10 sequences were sampled, consisted of a random mixture of the light-
induced (Desprez et al. 1998) and random data sets (see Data Sets). Preliminary tests showed that the 3rd- 
order background model has a better performance than the other higher-order background models on this 
data set. Therefore in the next set of exhaustive tests only the single nucleotide and the third-order 
background model were compared. All parameters of the motif sampler algorithm were kept fixed except for 
the order of the background model (we tried either single nucleotide frequency, 3rd-order Markov model 
computed from the input data or 3rd-order Markov model computed from the intergenic data set). In each test 
we searched for 10 different motifs with a length of 8bp that can have 0 or 1 copy in the sequence and each 
test was repeated 10 times.  
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To evaluate the results we checked in which runs the G-box consensus CACGTG was detected. Based on 
this definition of the G-box sequence, we calculated the number of times the G-box was found in each test 
(group of 10 runs). Figure 4a describes the behaviour of the algorithm in the presence of an increasing 
number of noisy sequences for different background models. The third-order background model clearly 
outperforms the single nucleotide background model. With the single nucleotide model, the algorithm only 
detects the G-box consensus in a small number of runs even in the presence of only a limited number of 
noisy sequences. Both higher-order background models can find the G-box consensus in the presence of a 
large number of noisy sequences. To further validate the outcome, the positions of the G-box motifs 
predicted by the algorithm were compared with the positions of G-box of the documented 33 G-box 
sequences. Three different possibilities can be distinguished:  

1. The predicted motif is located at the same position as the known G-box motif (true positive). 
2. The algorithm could not detect a motif although the presence of a motif was described (false 

negative). 
3. A potential G-box motif detected by the algorithm is located at a different position than the described 

G-box (ambiguous case).  
In the last case, the predicted position might represent a yet undetected G-box and is therefore inconclusive.  
Figure 2a shows the average number of correctly predicted motif positions. The calculation was based for 
each experiment only on the runs in which a G-box consensus was detected. Figure 4b demonstrates that the 
number of correctly predicted motifs (true positives) decreases slightly with increasing noise. However, the 
order of the background model does not interfere drastically with the number of correctly predicted motifs. 
On average, approximately 70% of the G-boxes were correctly predicted.  This indicates that, if a motif is 
detected, it is in 70% of the cases the right motif, irrespective of the background model. The background 
model does not improve the performance of the algorithm in making correct predictions. However, the 
influence of the higher-order background model on the robustness and performance of the algorithm in the 
presence of noise becomes obvious when taking into account the number of missed true positives. Figure 4c 
depicts the average number of sequences in which the algorithm could not predict the right G-box motif 
(false negatives). This number of false negatives consists of all the sequences in a run in which the algorithm 
could not detect a G-box consensus although a G-box was described in the sequence. Figure 4c shows that 
the more noise is added to the data set, the higher the percentage of missed G-boxes. Moreover, this effect is 
considerably more pronounced for the single nucleotide background model than for the third-order 
background model. The third-order model based on the set of intergenic sequences performs better than the 
third-order model based on the input data.  
We usually observed during the tests that when using a third-order background model, the algorithm 
retrieved the G-box consensus as one of the first motifs, while this was not the case for the single nucleotide 
model. The rapid convergence of the algorithm to the G-box indicates that it is a very stable motif in the 
presence of a third-order model. This was further corroborated by the fact the G-box motif was in these cases 
also the motif with the highest log-likelihood score. 
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Discussion 
We aimed at improving the performance of a probabilistic implementation of a motif finding algorithm in the 
presence of noisy data. To this end, the existing algorithm was extended with a more complex background 
model. We anticipated that the description of the background sequences as single nucleotide frequencies was 
not sufficient to capture the complex information in the inherently non-random sequence code. Therefore we 
used higher-order Markov models to represent the intergenic sequences in DNA. We adapted the original 
Gibbs Sampling algorithm in such a way that we can incorporate the higher-order background model to 
update the probabilities of finding a motif at a certain position in the sequence. A set of carefully selected 
intergenic regions was used to construct a higher-order background model for A. thaliana. As was shown in 
the Results section the quality and the size of this intergenic data set determine the reliability of the order of 
the model. We tested our implementation on different simulated data sets, where the sequences were 
generated from the 4th-order background model and different types of motifs were inserted. These test have 
shown that the use of a higher order background model, especially 3rd or 4th-order, can improve the 
performance of the algorithm. We also showed with the simulated data that when using an unreliable higher-
order model (e.g., the 3rd-order model based on the input sequences) the performance decreases significantly.  
The behaviour of the algorithm in the presence of an increasing amount of noisy data has extensively been 
tested. The use of a third-order model was shown to be considerably more robust than a single nucleotide 
background model. The overall recovery of the motifs was higher in the presence of a higher-order model, 
though the number of correctly predicted motifs was only marginally affected by the complexity of the 
background model.     
Future work will concentrate on the improvement of the A. thaliana background model through extending 
the intergenic data set and also by using interpolated Markov chains to augment the significance of the 
transition matrix. Focus will be on the automatic selection of the best background model. We will also 
compile background models of other organisms.  
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 Figure 1. Representation of the three different configuration of the intergenic region in DNA. The genes are 
represented with an arrow and the core promoter for each gene is indicated with an oval box. (1) The two 
genes are pointing in the same direction and there is one core promoter in the intergenic region. (2) Two 
genes are pointing in the opposite directions and the intergenic region contains the two core promoters. In the 
last case (3) the genes are pointing towards each other and in the intergenic region there is no core promoter 
present. 
Figure 2. Logo representation of the 4 inserted sites in the simulated sequences. These logos are created 
from the all the inserted instances of the motifs in the sequences. 
Figure 3. Comparison of the 3rd-order transition matrices computed from the intergenic sequences and the 
input sequences. Each point represents a corresponding entry in both transition matrices. The x-axis indicates 
the value in the intergenic matrix while the y-axis depicts the value in the matrix based on the input 
sequences. For some of the outliers the corresponding entry in the matrix is given. 
Figure 4. (a) Total number of times the G-box consensus is found in 10 runs. The horizontal axis shows the 
number of noisy sequences added to the G-box data set. (b) Average number of correctly predicted G-box 
positions. This number is based on comparison of the described G-box positions and the predicted positions 
of the G-box motif in all the runs where a G-box consensus was found. (c) Average percentage of wrongly 
classified motifs. This number is based the number of sequences that are indicated as not having a G-box 
although a G-box was documented (including the runs where no G-box consensus is found).   
Table 1. Results of the motif finding in the simulated sequences with all 4 motifs inserted. Each number 
corresponds to number of runs, out of 20, in which the corresponding consensus was found and this for the 
different orders of the background models.   
Table 2. Results of the motif finding in the simulated sequences with only the AT-rich motif inserted. Each 
number corresponds to number of runs, out of 20, in which the correct consensus was found and this for all 
the background models based on the intergenic data set.   
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Table 1 

Input sequences Intergenic Sequences 
 

3 2 1 snf snf 1 2 3 4 5 

GCTGCAGC 0 18 14 19 19 19 20 20 18 15 
TAGAATA 4 12 14 8 9 17 16 20 20 15 
GsCCGnnnCGGsC 2 4 7 7 13 11 14 14 18 10 
ATAnwCCwnTAA 9 9 5 4 3 9 13 13 14 12 
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Table 2 

  snf 1 2 3 4 5 

TTAAwCwATA correct 5 9 14 10 13 5 

 shifted 1 2 3 4 3 2 

wTAATsTATA correct 0 12 7 12 8 8 

 shifted 1 5 6 4 5 3 
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Figure 2 
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Figure 4a 
 
 
 
 


