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ABSTRACT

Motivation: The transcriptional regulation of a metazoan
gene depends on the cooperative action of multiple
transcription factors that bind to cis-regulatory modules
(CRMSs) located in the neighborhood of the gene. By
integrating multiple signals, CRMs confer an organism
specific spatial and temporal rate of transcription.
Results: Based on the hypothesis that genes that are
needed in exactly the same conditions might share similar
regulatory switches, we have developed a novel method-
ology to find CRMs in a set of coexpressed or coregulated
genes. The ModuleSearcher algorithm finds for a given
gene set the best scoring combination of transcription
factor binding sites within a sequence window using an A*
procedure for tree searching. To keep the level of noise
low, we use DNA sequences that are most likely to contain
functional cis-regulatory information, namely conserved
regions between human and mouse orthologous genes.
The ModuleScanner performs genomic searches with a
predicted CRM or with a user-defined CRM known from
the literature to find possible target genes. The validity of
a set of putative targets is checked using Gene Ontology
annotations. We demonstrate the use and effectiveness
of the ModuleSearcher and ModuleScanner algorithms
and test their specificity and sensitivity on semi-artificial
data. Next, we search for a module in a cluster of gene
expression profiles of human cell cycle genes.
Availability: The ModuleSearcher is available as a web
service within the TOUCAN workbench for regulatory
sequence analysis, which can be downloaded from http:
Ilwww.esat.kuleuven.ac.be/~dna/Biol.

Contact: stein.aerts@esat.kuleuven.ac.be

INTRODUCTION

governing the genetic developmental program can hardly
be overestimated, given that, while highly diverse in
developmental patterns, bilaterians share the same basic
set of developmental genes—a fact that has become clear
by comparative genomics and by rescue experiments
on knock-outs with orthologous genes. Working with
combinations of factors makes it possible to integrate
multiple inputs and this further provides cross-coupling
of signal transduction and gene regulatory pathways.
This way, a CRM functions as an information processing
device (Yuhet al., 1998).

The availability of several sequenced and annotated
genomes and specialized alignment algorithms designed
to identify functional noncoding segments (e.g., AVID
(Brayet al., 2003) among others) allow for the delineation
of putative regions containing CRMs in large intergenic
sequences (Bermaat al., 2002; Aertset al., 2003). It is
an effective way of reducing the search space of possible
binding sites, thereby reducing the number of false
positives while the associated increase of true negatives
(true binding sites located outside syntenic regions cannot
be detected) is limited. Yulet al. (2002) obtained a
success rate of 65% of syntenic regions between two sea
urchins that are functional in the cis-regulatiorobf.

As thousands of genes are activated during development
it is expected that at least some genes might share
one or more CRMs. Detecting DNA motifs by their
statistical over-representation in a set of sequences (Thijs
et al., 2002; van Helderet al., 1998) or detecting over-
represented hits of known TFBSs (Aeetsl., 2003) have
been used with various degrees of success. Exploiting
colocalization to find true binding sites in a particular
gene yields valuable hypotheses regarding transcriptional
regulation, for example in combination with sequence

Cisregulatory modules (CRMs), either proximal to conservation across species (Loetsal., 2002; Jegga
genes (called promoters) or distal (called enhancers§t al., 2002), and particularly for known combinations
control complex genetic programs, such as bilateria®f factors (Bermaret al., 2002; Krivan and Wasserman,
development (Davidson, 2001). The role of CRMs in2001; Wasserman and Fickett, 1998; Haltral., 2002,

*To whom correspondence should be addressed.

Rebeizet al., 2002) or for multiple instances of one factor
(Marksteinet al., 2002).
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Here we present a novel approach for finding combinato predict transcription factor binding sites (TFBSSs)
tions of TFBSs that occur several times across multiplaising the MotifScanner algorithm (prior parameter set
coregulated human genes. We specifically search withito 0.2, see below). Frequency matrices were taken from
syntenic regions with respective mouse orthologousS’ RANSFAC Professional release 6.3, which contained
genes since these have a high chance of containing re4P9 vertebrate matrices. All occurrences are stored in
CRMs (i.e., functional evolutionary conservation). We GFF format in the ‘Syntenic GFF' database that is both
apply a score function that combines slightly adjusted logused for the selection of annotated regions of coregulated
likelihood ratios (using higher-order background mod-genes (to find CRMs) and for ‘genomic searches’ to find
els) of individual position-specific frequency matricesgenes containing a given CRM. In the current version
(PSFMs) from TRANSFAC (Wingendeet al., 2000). we have limited the intergenic sequence space to 10kb
Here, attention is paid to the sensitivity and specificityupstream of the coding sequence, but extensions towards
of the PSFM scoring. Obviously an efficient algorithm syntenic regions located in introns or downstream of the
is needed to search the enormous state space of possilgene are possible.

combinations of binding sites (e.g., if we have 400 factors_. . .
then there are 4895! = 8.1010 possibilities for a CRM ~ Semi-artificial sequencesets - A 3rd-order Markov model

with 5 binding sites). The ModuleSearcher algorithmWas calculated from the Syntenic fastA database (Thijs
implements the score function in & tree search. We €t & 2001), representing the base pair composition of
show the results of the ModuleSearcher obtained Ofc;onserve_d regions. Art|f|C|aI_sequences were generated
four artificial data sets and explore the sensitivity and®?Y S@mpling symbols from this background model. Tran-
specificity of the algorithm. Using the rare examples ofSCription factor binding sites were implanted at random
CRMs in the literature, we hereby justify the methodology!ocations by sampling a TFBS from position-specific
and the different thresholds and parameters used alod§fduency matrices. To reflect a more realistic biological
the road, when applying the ModuleSearcher on regpituation, we added artificial sequences without implanted
biological data. For the latter we have chosen a cohereftinding sites that represent false positive sequences (a
cluster of gene expression profiles, as captured by K@l set of sequences thait contain the same CRM can
microarray study on the cell cycle in a human cancelpmbab!y never be found and sequence sets gould consist
cell line. The modules we find are proven to contain reaPf Multiple classes of regulons each containing another
regulatory information. To our knowledge, this shows for CRM). The second column of Table 1 describes the
the first time that module detection in microarray cluster<ONtents of the four constructed test sets. In2wtultiple
of human genes is feasible, when taking all precautions_Of these artificial sequences were implanted themselves
discussed here to reduce the level of noise into account. INtC larger sequences. Figure 2F shows 10 such sequences
The score function alone is used in the ModuleScannefith four implanted CRMs each, separated by Ns. The
program to detect genes that might be controlled by Hdlanks between the modules illustrate the fact that we will
certain CRM. We have tested this program using the |[ENCONsider only the syntenic regions, not other intergenic
B enhancer as a model, and using the predicted CRM

the microarray cluster. Predicted targets are validated oyq of coregulated genes Sets of coexpressed genes

silico using Gene Ontology annotation. were selected using SOURCE (Dieleh al., 2003). A
typical case of coregulation is the cell cycle and we have
DATA AND METHODS queried the SOURCE database for cyclin B2 (CCNB2).

Methodology overview Figure 1 shows a flow chart that In the ‘expression view’ we have chosen the data set of
overviews the system for detecting regulatory moduleggene expression during the cell cycle in a human cancer
(read more below and in the figure caption). cell line (HeLa) (Whitfieldet al., 2002). By searching for

i ) genes that have a similar profile, using the functionality
Human-mouse = syntenic regions All - human-mouse oyided by the application, we selected 44 genes that
orthologou_s pairs were selected from Ensembl releas_e r%ight share a commodis-regulatory element. Of these,
(19,914 pairs). 10kb of sequence upstream of the codings haqg a Ensembl identifier, and in this set we found 13

sequence of the human and mouse gene were selectgdnes with at least one syntenic region with the respective
(18,778 pairs with successful selection). Each 10kb paif,ose orthologous gene (32 regions in total).

was digned with AVID (Bray et al., 2003) and the align-

ment output was parsed using VISTA (Maybial., 2000)  Scoring single TFBSs The binding sites of transcription

to select regions with at least 75% identity in windowsfactors have been represented and predicted with matrices
of 100 bp (10,049 pairs had at least one region; 33,28%r the last two decades (Stormo, 2000). We start from
regions in total). These regions form the "Syntenic fastA”the position-specific frequency matrf® (PSFM) and a
database (Fig. 1). All syntenic regions were scannethigher-order background modél,,. Combining PSFM
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Fig. 1. Overview of the system to detect regulatory modules. All DNA regions, ranging from 100 to several hundreds of base pairs, resulting
from global alignment of all human-mouse ortholog pairs are stored, as are the hits of all transcription factors of TRANSFAC, in GFF format.
The GFF can be selected for a set of genes, and the ModuleSearcher finds the best module model within the set. Such a model can then be
used to find putative targets, using the same GFF database.

and background model, the scoféx) of a segmenk =  Matrix similarity Motif models are redundant at two
[b1, by, ..., b,]inasequenceis computed as levels: (1) there can be multiple matrices describing the
1", 00, |) binding site of the same TF and (2) there can be distinct
W(X) = w1=1 b , TFs with similar PSFMs. Consequently there is a limit
[Tj=1 P(bjls. Bm) on the sensitivity to distinguish some models computa-

where b; is the nucleotide found at positiop in the ~ tionally. The similarity between two motif model®,

segmenix, ©(bj, j) is the probability of findingb; at and ©, is measureo_l Wl_th the Kullback-Leiber distance

position j according to the PSFM an@(bj|s, By) is  (Kullback, 1959), which is computed as

the probability of findingo; in the sequence according to L T o4(i.b)

the background model. This formula indicates how likely : 1(J,

it is that the segment is generated by the motif model M Z Z 010, b)Iog®2(j’ b)

with respect to the background. The use of higher-order

bac_l_<ground models have been described extensively iyhere ©1(j, b) is the probability of finding basé at

(Thijs et al., 2001). , , _positionj in Motif 1, w is the length of the motif, and is
These scores can be used directly, as in a PWM scoringe set of all possible alignments for an allowed shift (e.g.,

scheme (Stormo, 2000), by computing the logarithm o pase pairs). Since this equation is asymmetric, we take

W(x) and rescaling the scores to a value between Ghe average between the distance fi@mto ©; and from

and 1. By defining a threshold, we retain all segmentsg, to @,. The motif models can be grouped into classes

with a score greater than this threshold. The reSUIt'ngjepending on an imposed threshold on this distance.

program is called MotifLocator. The second program,we have used threshold values of 0.2 (high stringency),

MotifScanner, uses a probabilistic sequence model 19 3 moderate stringency), and 0.4 (low stringency) to
estimate the number of instancesf a motif model that  -nstruct classes of motif models.

are hidden in a noisy background sequence (Aeirts.,
2003). If the estimated number of instances, ithec sites  Module score function Analogous with the distinction
with the highest scoré/(x) in the sequence are selected. between a binding site and a motif model (a frequency

i—1b=A

i7



S.Aerts et al.

matrix is a motif model), we distinguish CRMs and CRM bioinformatics, theA* algorithm has already been used
models. CRMs are clusters of actual binding sites on dor multiple sequence alignment (Lermen and Reinert,
sequence, and CRM models are sets of motif model2000). Each node in the implicit search tree is a CRM
The score of a CRM modeh on a set of sequences=  model. Creating child nodes involves adding TFBMs to
(s1,...,Sy) is @lculated as parent CRM models. Since we do not consider the order
of sites in this step, we have removed redundant nodes
by allowing only alphabetically ordered CRM models. A
functionGm = Sm~+Hm n, is used, wheréy, is the score-
function, andHm n, iS @ heuristic overestimate of the rise
The score of a CRM modei on one sequence is  in score from CRM modeh to the best child CRM model

Sm(®) =) Sm(s).
i=1

calculated as mp. The algorithm, searching for the maximal score, is
| shown here:
Sm(s) = , max pHb(t) x Y log S(tilfis's). 1. Initialization
pe i=1 (a) Queue contains the root node as only element

The different elements of this formula are the following. (the empty'CRM model).
Each cis-regulatory module modeh is a collection of (b) Solution is null.
motif models®s4, ..., ©,. The set of matching binding (c) The parameteng is set, which is the number
sites ist = (t'fj, . ,tllf'j), wheret!, is thekth instance of sites a module should contain.
of © on sequence, S(t*)) is the score of one TFBS. (d) The parameters of the score function are ini-
b(t) is a boolean function expressing whether the given tialized.
combination of TFBSs is classified as a valid CRM or 2. While Gm(St, ... ,S) > Ssolution(S), Wherem is
not. This function is determined by two parameters: (1) the first CRM model in theQueue (or while no

overlap between different TFBSs can be allowed or not Solution is found yet), do
and (2) the sites should fall within the specified window
length (default = 200 base pairs). The paramdtegsi =
1,...,l, represent a count over the occurring TFBSs of
model ®; in sequences. If the MotifScanner algorithm
returnsg; s sites of model®; on sequencss, ki s can
take the values ,0..,qis. A value ofkis = 0 means v th o).
that no instance 00; is found. By definitionS(ti?S) = eﬁac(g)r/etatzzanmew)(.:RM modeh - Mo
. . K . . new,i — LY
1, Vi, vs. Since logS (1) can be interpreted as the energy (add®; tom).

of binding of thekth TFBS of ®; on sequencss, this
definition makes sense (logt 0). The factor p(t)

(a) Remove first CRM modeh from Queue.

(b) Do for all valid models®; (©; is valid if the
CRM model does not contain@ of the same
class, unless multiple copies of the same motif
model are allowed, but the latter is only true for

ii. If the size of Mpewi IS ne, and if

functions as a penalization of CRMs that do not contain Smpewi (S) > SSolution(St, - - - » Sn), then
an instance of each motif model currently in the module _ Solution = Mpew.

model. It is the number of occurring sites in the module iii. Ifthe size ofmpew,i does not equale, add
divided by the number of motif modelsin the current Mnewi t0 Queue.

module model. Penalization of incomplete CRMs can (c) Sort theQueue by descendingi(s), where
be enabled or disabled, as required by the user. If it is

disabled,p(t) = 1, Vs, VK. Gm(S) = Sm(S) + Hm,ne (S

The score incorporates distance constraints in the form
of a window and does not take the motif order into ac-
count. The simple score function presented here was satis-
factory for our current goals. However, more complicated
score functions based on hidden markov models could be

with Hmne (S) is @ heuristic function that is

an overestimate of the difference between the
score ofm and the best CRM model consisting
of ng matrices and containing all matrices of

tested in the future, such as COMET (Frétral., 2002). m.

e
The A* search algorithm Our search for the best CRM H! S) = maxbm(t Sio (S
model on a set of coregulated genes is handled witA*an e (9 t m( )i=XIJ;1 (©:1():
procedure, a branch-and-bound search with an estimate
of remaining distance to the solution. It is an optimal where | is the length of CRM modeim,
heuristic graph search algorithm (Haett al., 1968). In and [@;] is a CRM model containing one
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matrix, ®;. TheseSw, (s, ..., S), YVkcanbe RESULTS

calculated before the start of the algorithm. gemi-artificial sequences
bm(tk .. --- . tk) IS @ boolean function ex-
pressing whether the given combination of
motif models, when added tm, constitutes
a valid CRM model or not (2b). In case we
penalize incomplete CRMs, the heuristic
becomes

Table 1 lists the results obtained on semi-artificial data
(see Data & Methods). Analysis of Afit shows that the
ModuleSearcher is able to detect a module of 5 elements
correctly (all 5 elements are found) when it is hidden in
10 sequences of 200 bp and when another 10 random
sequences of the same length are added. The results on
_ g / the Art2 set show that the ModuleSearcher can detect 2
Hmno (8) = Sm(® = Sm(S) + Hmng (9- distinct modules that are hidden in a set of 15 sequences,
although some elements were misidentified: 4 out of
whereS and X’ are the score function with- 5 elements of Module 1 are correct, and 2 out of 3
elements of Module 2 are correct. Figure 2A-E shows
Art_2 when scored with the MotifScanner. It can be seen
i ) from this figure that many implanted sites are missed in
3. Solution now contains the optimal CRM model.  the scoring step, which causes an important limitation on
the sensitivity of module detection.
We search for a combination of factors that is over-
follows. All annotated GO terms for a set of genesrepresented in a set; there_fore a distinction can be made
between treating all syntenic regions of one gene indepen-

are retrieved from the GOA annotations of the EBId tv (in that ¢ i I . £ all
(http://www.ebi.ac.uk/GOA/). For each term, each path to ently (in that case, a set contains all regions of all genes

the root of the GO tree is followed and each encountereaeparately) and keeping all regions of a gene together (the

term is added to a gene’s annotation. For each term, th%et contains all genes, each having one or more regions).

frequency of this term is then the number of genes tha 0 investigate this eﬁec_t, anq more importa}ntly to decide
have the term in their extended annotation divided b>yvhether to keep the regions In a _real b|olog|g:al d.a.‘t"." setto-
the total number of genes in the gene set. The binomi&q]ether, we tested both possibilities on semi-artificial data
formula is then used to calculatp values for each as well. Comparing A8 (where all regions are added

frequency, where the expected frequencies are calculat @Idgpendently to a set) and At(where multiple syntenic

from a large reference set, such as the complete humdfr9'ons of one gene are kept tqgether, see Figurg 2'.:)
Igeeows that the second approach is advisable, so this will

genome. For the analysis described here we have us X )
the set of human genes that have a mouse ortholog. T applied on the coexpressed gene set as described below.

p values are then corrected for multiple testing. GO4GSensitivityto PWM scoring

can be used for testing the functional coherence of a gene )
set and is therefore useful for validating predicted targePec@use the ModuleSearcher algorithm uses the scores of

individual matrix hits, we have compared the effectiveness
of the algorithm using different types of scoring (as de-
Availability within Toucan The ModuleSearcher is scribed in Methods). The Art set was scored with the
included in Toucan (Aertst al., 2003) as a web service MotifScanner using different values for the prior parame-
(Stein, 2002). Toucan is a Java tool faisregulatory ter. When 0.1 or 0.2 were used, the ModuleSearcher found
sequence analysis and phylogenetic footprinting foi5 out of 5 correct CRM elements. Using 0.5 as a prior, it
metazoan genes. It is tightly linked with the Ensemblfound 4 out of 5 elements. The same set was also scored
genome databases (Hubbagd al., 2002) for the re- with the MotifLocator, with varying threshold values. The
trieval of intergenic sequences, gene annotations, aniotifLocator can be compared with other programs that
orthologous sequences. Once a sequence set is crgsore frequency matrices such as Matinspector (Quetndt
ated, the MotifScanner (Aertgt al., 2003) can be al., 1995). Setting the threshold to 0.75 resulted in 4 out
run to score the sequences with a database of posdf 5 correct elements, but this threshold yields 12 times as
tion weight matrices or the MotifSampler (Thijst  many hits as for the MotifScanner with prior 0.2. A thresh-
al.,, 2002) can be used to find over-represented motif®ld of 0.8 resulted in 3 out of 5 correct elements; 0.85 in
using Gibbs sampling. The putative binding sites thatl out of 5 and 0.9 in 0 out of 5. Taken together, the Mo-
result from these actions can be sent to the ModuletifScanner (with its probabilistic estimation of the number
Searcher to find the best combination of sites. Toucawof hits) confers robustness to the ModuleSearcher and will
can be stArtd from a URL using Java Web Start (http:be used in the Syntenic GFF database and in the study of
Ilwww.esat.kuleuven.ac.betina/Biol/Software.html). coexpressed genes.

out penalization and the heuristic without pe-
nalization, respectively.

Gene Ontology statistics GO4G  (http://www.esat.
kuleuven.ac.befsaerts/software/go4g.html) works as
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Fig. 2. Module detection in artificial data sets. A. Set &ts described in Table 1, showing only the implanted binding sites, sampled from

the respective matrices from TRANSFAC. B. The same set, scored with the MotifScanner using all available matrices. This is the actual
data in which the ModuleSearcher will search for modules. C. The same as in B, but now only displaying the instances of the matrices that
were implanted. It is clear that there are many false positives and many true negatives, a fact that obviously hinders module detection. D.
In blue are the results of a first run of the ModuleSearcher and in grey the implanted sites as in A. E. In red and green are two of the three
hidden matrices, as detected in a second run on the same set (masking the results of the first run) of the ModuleSearche# BsSet Art
described in Table 1, resembling the biological situation where multiple syntenic regions of one gene belong together. Only the encircled
regions have implanted modules (5 out of 40 regions), and these can still be detected. G. Six of the 20 highest scoring syntenic regions with
the CEBPA-STAF-NFY-TCF4 model that was found in the cyclin B2 microarray cluster. The closed boxes are the sites of the module and
the open boxes are putative sites of the same factors scored with a lower threshold. Taking the open and closed boxes together, each region
has at least one instance of each module factor.
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Table 1. Results of the ModuleSearcher on different sequence sets

Set name Set contents Highest scoring module Notes
10 random sequences of 200bp, each
with following implants:
MO00134-V$HNF401 MO00134-V$HNF401
M00131-V$HNF3BO1 M00131-V$HNF3BO1 5 out of 5 correct.
Art_1 M00190-V$CEBPQ2 M00190-V$CEBPQ2 The found module contains
M00174-V$AP1Q6 4M00188-V$AP1Q6 all 5 hidden elements.
M00206-V$HNF1C M00206-V$HNF1C
+ 10 random sequences of 200bp
without implants (i.e., noise)
5 random sequences of 200bp, each
with following implants:
MO00134-V$HNF401 First run:
M00131-V$HNF3BO1 MO00134-V$HNF401
MO00190-VSCEBRQ2 MO00131-VSHNF3B01 The first module was found with 4
MO00174-V$AP1Q6 M00190-V$CEBRQ2
out of 5 elements correct.
MO00206-VEHNFLC M00188-VSAP1Q6 The second module was found after
Art.2 +5 raqdom sequenpes of 200bp, PM00328-V$PAXEB masking the elements of the first
eachr)lggghSZI\l;);;/\zr;iT;);aArggl Secaond run: module; 2 out of 3 elements of the
MO00747-V$IRF106 i MO00052-VENFKAPPABG501 second module are correct.
MO00750-VSHMGIY.Q6 M00750-V$HMGIY_Q6
bM00158-V$COURO1
5 random sequences of 200bp
without implants (i.e., noise)
See Figure 2A
5 random sequences of 200bp, each
with following implants:
M00134-V$HNF401 PM00446-V$SPZ101
M00131-V$HNF3BO1 bM00285-V$TCF1101 The hidden module is not
Art_3 MO00190-V$CEBPQ2 bM00748-V$STAT5BQ6 found when it is presentin
M00174-V$AP1Q6 bM00137-V$OCT103 only 5 out of 40 sequences.
M00206-V$HNF1C PM00734-V$CI1Z01
+ 35 random sequences of 200bp
without implants (i.e., noise)
5 genes with 1 module as in Adt MO0134-V$HNF401 When different regions of the
and 3 empty_modules, well _separated MO00131-V$HNF3RO1 same gene are grouped
Art4 + 5 genes with 4 empty regions. M00190-VSCEBRPQ2 together, the level of noise is
The empty stretches between the aM00188-VSAP1Q6 reduced and the module can
regions are not scored with MOO0206-VSHNFLC be found, with 5 out of 5
TRANSFAC. See Figure 2F. elements correct.
Set of 13 human genes coexpressed
n’gtggz;g ;Bszei‘gt'gg g‘:ﬁfgggggg MO00116-V$CEBPAOL This result was validated by
CCNBZ2clus In total they have 48 conserved M00264-VSSTAR02 finding target genes of the

sequence blocks within 10kb
upstream of the CDS. The blocks of a
gene are grouped together as in Art

MO00287-VSNFY.01
MO00671-V$TCF4Q5

module using the
MotifScanner, see text.

a Motif belongs to the same class as the implanted motif;

b Motif that was not implanted

Genomic searches of target detection, we have compared the scores of the
Using the ModuleScanner we can score the completée€quences inthe At set (using the best CRM found with

‘Syntenic GFF’ database to find syntenic regions thathe ModuleSearcher in this set) with the scores of the same
potentially contain a CRM. To determine the specificity (artificial) CRM on the database. There are 6 regions (out
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of the 10 regions where we implanted it) that have a higheFigure 2G), which could explain its presence in the
score than all the regions in the database. module. The fourth element, STAF, is a zinc finger protein
A second test was carried out, this time using a knownhat is a promiscuous activator for enhanced transcription
cisregulatory module, namely the IFB- enhancer by RNA polymerases Il and lIl (Schawal., 1997).
(Munshiet al., 1999). This module contains, within less Using the [STAF-CEBPA-NFY-TCF4] module in a
than 100 base pairs, functional binding sites for - genomic search with the ModuleScanner shows indeed
ATF2/JUN, IRF, and HMGI(Y) (four copies and one that this combination contains cell-cycle specific regula-
overlaps with the NEg site). The TRANSFAC database tory information, because (1) 30.8% (4 out of 13) of the
only contains matrices for HMGI(Y), N&8, and IRF-1  original cluster is found in the top 100 scoring genes, and
so we used these three to specify a module model. Th@) the GO4G statistics on the top 20 scoring genes show
ModuleScanner scored the GFF database with this modey, significant (correctedp value smaller than 0.05) for
and the top 10 scoring genes were fed into the GO4Germs like ‘mitosis’, ‘regulation of cell cycle’, and ‘cell
program. Table 2 shows the significantly over-representegroliferation’ (see Table 2). Figure 2G shows the actual
GO terms within these 10 genes, and it can be seemodules in some of the top 20 scoring cell cycle genes.
that they are related to the response of a cell to virapbolo-like kinase (PLK) is possibly active in chromosomal
infection, the process where the IFNenhancer is active. segregation, NEK2 is involved in chromosome segrega-
The IFN-8 gene itself was found as fourth best scoringtion and centrosome separation. CDC2 (cell division cycle
gene. Other high scoring genes include: EH-domairp) s a catalytic subunit of the highly conserved protein
containing protein 1 (testilin, HUGO=EHD1) involved kinase complex known as M-phase promoting factor
in the recycling of major histocompatibility complex (MpF), which is essential for G1/S and G2/M phase tran-
class | molecules to the plasma membrane; IB-pre-  sitions of eukaryotic cell cycle. CKS1B is also known as

cursor (catabolin, HUGO=IL1B), an important mediator cpc2 associated protein so its coregulation with CDC2 is
of the inflammatory response; Ni inhibitor alpha  pjausible.

(HUGO=NFKBIA), involved in apoptosis and possibly

pointing at feedback control mechanisms; and Semaphori&ONCLUSIONS

3B precursor (HUGO=SEMAS3B), involved in cell-cell ] ) ]

signaling and possibly coregulated with IF\to mediate  1he ultimate goal of every technique fors-regulatory
contacts between dendritic cells and T lymphocytes. Bfequgnce analysis is to detect _reaI blnd_lng sites for tr_an-
combining transcription factors in modules, the specificitySCription factors that can explain a particular expression
increases to a level where genomic searches beconfofile of a gene. In studies in organisms with compact
feasible. This result opens the door to the validatiordenomes and with a limited complexity of cooperativity,
of predicted modules, as illustrated in the next paraSuch as yeast, the detection of over-represented binding
graph, because a genomic search with a false modufdtes in the promoters of the genes in a microarray cluster
extremely low chance of statistical significant functional ing several aspects of transcriptional regulation, especially

coherence. in combination with genomewide location analysis (leee
al., 2002).
Detecting modulesin microarray clusters To test the rather ambitious thought that our methodol-

The selected gene cluster around cyclin B2 (26 gene®dy could help in analogous studies in human, we have
see Data and Methods) is functionally tight: amongfirst tested the proposed algorithms on artificial data and
the highly significantly over-represented Gene ont0|ogyshowed that we could find back the hidden modules with a
terms are cell cycle (15 genegp, value = 1014, M high sensitivity (i.e., after adding multiple sequences with-
phase (9 genesp value = 310°13), and microtubule out the module), even if many of the implanted sites are
cytoskeleton (9 geneg value = 210~ 7). The best module missed by the matrix scoring step. The influence of the
model in the cluster, as selected by the ModuleSearchéatter on the robustness of module finding was also tested
(window=100bp andneg=4) consisted of NFY, STAF, and it was shown that our probabilistic estimation of the
TCF4, and CEBPA. It has been shown that NFY (nucleanumber of hits is more reliable than traditional log odds
factor Y) regulates genes (e.g., cyclin B1) in a cellscoring. Another test showed that the signal to noise ratio
type specific and cell-cycle dependent fashion (Katulds much higher when the syntenic regions of a gene are
et al., 1997). TCF4 regulates cyclin D1 expression in akept together instead of separating them.

complex withB-catenin (Tetsu and McCormick, 1999), so  Our current program always finds a ‘best’ module model
its involvement in cell-cycle specific expression of otherin a set of sequences. Therefore, it is necessary to validate
genes is plausible. CEBPA (CCAAT/enhancer bindingthe module. Some possibilities are (1) the ability to re-
protein alpha) overlaps with some of the NFY sites (sedrieve target genes in the genome, (2) functional coherence
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Table 2. Validating putative target genes found by the ModuleScanner using GO4G

Genes Significant GO terms Correctedalue
apoptosis 0.002046759
negative regulation of cell proliferation 0.003660635
protein amino acid dephosphorylation 0.004239594
Top 10 scoring genes for a simplified response to pest/pathogen/parasite 0.005201112
IFN-g enhancer: protein phosphatase activity 0.006733237
MO00750-V$HMGIY_Q6 innate immune response 0.010171468
MO00054-VSNFKAPPABO cytokine activity 0.012253669
MO00747-V$IRF1Q6 response to stress 0.014523294
phosphoric monoester hydrolase activity 0.015017083
cell communication 0.031928904
Top 20 scoring genes for a new mitosis _ 0.000435808
module found with the M phase of mitotic cell cycle 0.000452022
ModuleSearcher on a set of cyclin B2 cytoklnes!s. . 0.000468573
coexpressed genes: nuclealj division 0.001257531
MO00116-VSCEBPAO1L regulation of cell cycle 0.001395887
MO00264-V$STAFO2 protein serine/threonine kinase activity 0.010734361
MO0671-V$TCF4Q5 cell proliferation 0.026461498

Terms with at least 2 occurrences and corregeglue smaller than 0.05 are shown. When both parent and child terms were significant, only the child is
shown.
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