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ABSTRACT
Motivation: The transcriptional regulation of a metazoan
gene depends on the cooperative action of multiple
transcription factors that bind to cis-regulatory modules
(CRMs) located in the neighborhood of the gene. By
integrating multiple signals, CRMs confer an organism
specific spatial and temporal rate of transcription.
Results: Based on the hypothesis that genes that are
needed in exactly the same conditions might share similar
regulatory switches, we have developed a novel method-
ology to find CRMs in a set of coexpressed or coregulated
genes. The ModuleSearcher algorithm finds for a given
gene set the best scoring combination of transcription
factor binding sites within a sequence window using an A∗
procedure for tree searching. To keep the level of noise
low, we use DNA sequences that are most likely to contain
functional cis-regulatory information, namely conserved
regions between human and mouse orthologous genes.
The ModuleScanner performs genomic searches with a
predicted CRM or with a user-defined CRM known from
the literature to find possible target genes. The validity of
a set of putative targets is checked using Gene Ontology
annotations. We demonstrate the use and effectiveness
of the ModuleSearcher and ModuleScanner algorithms
and test their specificity and sensitivity on semi-artificial
data. Next, we search for a module in a cluster of gene
expression profiles of human cell cycle genes.
Availability: The ModuleSearcher is available as a web
service within the TOUCAN workbench for regulatory
sequence analysis, which can be downloaded from http:
//www.esat.kuleuven.ac.be/∼dna/BioI.
Contact: stein.aerts@esat.kuleuven.ac.be

INTRODUCTION
Cis-regulatory modules (CRMs), either proximal to
genes (called promoters) or distal (called enhancers)
control complex genetic programs, such as bilaterian
development (Davidson, 2001). The role of CRMs in
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governing the genetic developmental program can hardly
be overestimated, given that, while highly diverse in
developmental patterns, bilaterians share the same basic
set of developmental genes—a fact that has become clear
by comparative genomics and by rescue experiments
on knock-outs with orthologous genes. Working with
combinations of factors makes it possible to integrate
multiple inputs and this further provides cross-coupling
of signal transduction and gene regulatory pathways.
This way, a CRM functions as an information processing
device (Yuhet al., 1998).

The availability of several sequenced and annotated
genomes and specialized alignment algorithms designed
to identify functional noncoding segments (e.g., AVID
(Brayet al., 2003) among others) allow for the delineation
of putative regions containing CRMs in large intergenic
sequences (Bermanet al., 2002; Aertset al., 2003). It is
an effective way of reducing the search space of possible
binding sites, thereby reducing the number of false
positives while the associated increase of true negatives
(true binding sites located outside syntenic regions cannot
be detected) is limited. Yuhet al. (2002) obtained a
success rate of 65% of syntenic regions between two sea
urchins that are functional in the cis-regulation ofotx.

As thousands of genes are activated during development
it is expected that at least some genes might share
one or more CRMs. Detecting DNA motifs by their
statistical over-representation in a set of sequences (Thijs
et al., 2002; van Heldenet al., 1998) or detecting over-
represented hits of known TFBSs (Aertset al., 2003) have
been used with various degrees of success. Exploiting
colocalization to find true binding sites in a particular
gene yields valuable hypotheses regarding transcriptional
regulation, for example in combination with sequence
conservation across species (Lootset al., 2002; Jegga
et al., 2002), and particularly for known combinations
of factors (Bermanet al., 2002; Krivan and Wasserman,
2001; Wasserman and Fickett, 1998; Halfonet al., 2002;
Rebeizet al., 2002) or for multiple instances of one factor
(Marksteinet al., 2002).
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Here we present a novel approach for finding combina-
tions of TFBSs that occur several times across multiple
coregulated human genes. We specifically search within
syntenic regions with respective mouse orthologous
genes since these have a high chance of containing real
CRMs (i.e., functional evolutionary conservation). We
apply a score function that combines slightly adjusted log
likelihood ratios (using higher-order background mod-
els) of individual position-specific frequency matrices
(PSFMs) from TRANSFAC (Wingenderet al., 2000).
Here, attention is paid to the sensitivity and specificity
of the PSFM scoring. Obviously an efficient algorithm
is needed to search the enormous state space of possible
combinations of binding sites (e.g., if we have 400 factors
then there are 4005/5! = 8.1010 possibilities for a CRM
with 5 binding sites). The ModuleSearcher algorithm
implements the score function in anA∗ tree search. We
show the results of the ModuleSearcher obtained on
four artificial data sets and explore the sensitivity and
specificity of the algorithm. Using the rare examples of
CRMs in the literature, we hereby justify the methodology
and the different thresholds and parameters used along
the road, when applying the ModuleSearcher on real
biological data. For the latter we have chosen a coherent
cluster of gene expression profiles, as captured by a
microarray study on the cell cycle in a human cancer
cell line. The modules we find are proven to contain real
regulatory information. To our knowledge, this shows for
the first time that module detection in microarray clusters
of human genes is feasible, when taking all precautions
discussed here to reduce the level of noise into account.

The score function alone is used in the ModuleScanner
program to detect genes that might be controlled by a
certain CRM. We have tested this program using the IFN-
β enhancer as a model, and using the predicted CRM of
the microarray cluster. Predicted targets are validatedin
silico using Gene Ontology annotation.

DATA AND METHODS
Methodology overview Figure 1 shows a flow chart that
overviews the system for detecting regulatory modules
(read more below and in the figure caption).

Human-mouse syntenic regions All human-mouse
orthologous pairs were selected from Ensembl release 9
(19,914 pairs). 10kb of sequence upstream of the coding
sequence of the human and mouse gene were selected
(18,778 pairs with successful selection). Each 10kb pair
was aligned with AVID (Bray et al., 2003) and the align-
ment output was parsed using VISTA (Mayoret al., 2000)
to select regions with at least 75% identity in windows
of 100 bp (10,049 pairs had at least one region; 33,282
regions in total). These regions form the ”Syntenic fastA”
database (Fig. 1). All syntenic regions were scanned

to predict transcription factor binding sites (TFBSs)
using the MotifScanner algorithm (prior parameter set
to 0.2, see below). Frequency matrices were taken from
TRANSFAC Professional release 6.3, which contained
429 vertebrate matrices. All occurrences are stored in
GFF format in the ‘Syntenic GFF’ database that is both
used for the selection of annotated regions of coregulated
genes (to find CRMs) and for ‘genomic searches’ to find
genes containing a given CRM. In the current version
we have limited the intergenic sequence space to 10kb
upstream of the coding sequence, but extensions towards
syntenic regions located in introns or downstream of the
gene are possible.

Semi-artificial sequence sets A 3rd-order Markov model
was calculated from the Syntenic fastA database (Thijs
et al., 2001), representing the base pair composition of
conserved regions. Artificial sequences were generated
by sampling symbols from this background model. Tran-
scription factor binding sites were implanted at random
locations by sampling a TFBS from position-specific
frequency matrices. To reflect a more realistic biological
situation, we added artificial sequences without implanted
binding sites that represent false positive sequences (a
real set of sequences thatall contain the same CRM can
probably never be found and sequence sets could consist
of multiple classes of regulons each containing another
CRM). The second column of Table 1 describes the
contents of the four constructed test sets. In Art3 multiple
of these artificial sequences were implanted themselves
into larger sequences. Figure 2F shows 10 such sequences
with four implanted CRMs each, separated by Ns. The
blanks between the modules illustrate the fact that we will
consider only the syntenic regions, not other intergenic
DNA.

Sets of coregulated genes Sets of coexpressed genes
were selected using SOURCE (Diehnet al., 2003). A
typical case of coregulation is the cell cycle and we have
queried the SOURCE database for cyclin B2 (CCNB2).
In the ‘expression view’ we have chosen the data set of
gene expression during the cell cycle in a human cancer
cell line (HeLa) (Whitfieldet al., 2002). By searching for
genes that have a similar profile, using the functionality
provided by the application, we selected 44 genes that
might share a commoncis-regulatory element. Of these,
34 had a Ensembl identifier, and in this set we found 13
genes with at least one syntenic region with the respective
mouse orthologous gene (32 regions in total).

Scoring single TFBSs The binding sites of transcription
factors have been represented and predicted with matrices
for the last two decades (Stormo, 2000). We start from
the position-specific frequency matrixΘ (PSFM) and a
higher-order background modelBm . Combining PSFM
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Fig. 1. Overview of the system to detect regulatory modules. All DNA regions, ranging from 100 to several hundreds of base pairs, resulting
from global alignment of all human-mouse ortholog pairs are stored, as are the hits of all transcription factors of TRANSFAC, in GFF format.
The GFF can be selected for a set of genes, and the ModuleSearcher finds the best module model within the set. Such a model can then be
used to find putative targets, using the same GFF database.

and background model, the scoreW (x) of a segmentx =
[b1, b2, . . . , bw] in a sequences is computed as

W (x) =
∏w

j=1 Θ(b j , j)∏w
j=1 P(b j |s,Bm)

,

where b j is the nucleotide found at positionj in the
segmentx, Θ(b j , j) is the probability of findingb j at
position j according to the PSFM andP(b j |s,Bm) is
the probability of findingb j in the sequence according to
the background model. This formula indicates how likely
it is that the segment is generated by the motif model
with respect to the background. The use of higher-order
background models have been described extensively in
(Thijs et al., 2001).

These scores can be used directly, as in a PWM scoring
scheme (Stormo, 2000), by computing the logarithm of
W (x) and rescaling the scores to a value between 0
and 1. By defining a threshold, we retain all segments
with a score greater than this threshold. The resulting
program is called MotifLocator. The second program,
MotifScanner, uses a probabilistic sequence model to
estimate the number of instancesc of a motif model that
are hidden in a noisy background sequence (Aertset al.,
2003). If the estimated number of instances isc, thec sites
with the highest scoreW (x) in the sequence are selected.

Matrix similarity Motif models are redundant at two
levels: (1) there can be multiple matrices describing the
binding site of the same TF and (2) there can be distinct
TFs with similar PSFMs. Consequently there is a limit
on the sensitivity to distinguish some models computa-
tionally. The similarity between two motif models,Θ1
and Θ2, is measured with the Kullback-Leiber distance
(Kullback, 1959), which is computed as

max
A

1

w

w∑
j=1

T∑
b=A

Θ1( j, b)log
Θ1( j, b)

Θ2( j, b)

where Θ1( j, b) is the probability of finding baseb at
position j in Motif 1, w is the length of the motif, andA is
the set of all possible alignments for an allowed shift (e.g.,
2 base pairs). Since this equation is asymmetric, we take
the average between the distance fromΘ1 to Θ2 and from
Θ2 to Θ1. The motif models can be grouped into classes
depending on an imposed threshold on this distance.
We have used threshold values of 0.2 (high stringency),
0.3 (moderate stringency), and 0.4 (low stringency) to
construct classes of motif models.

Module score function Analogous with the distinction
between a binding site and a motif model (a frequency
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matrix is a motif model), we distinguish CRMs and CRM
models. CRMs are clusters of actual binding sites on a
sequence, and CRM models are sets of motif models.
The score of a CRM modelm on a set of sequencess =
(s1, . . . , sn) is calculated as

Sm(s) =
n∑

i=1

Sm(si ).

The score of a CRM modelm on one sequences is
calculated as

Sm(s) = max
k1,s ,... ,kl,s

p(t)b(t) ×
l∑

i=1

logS(t
ki,s
i,s ).

The different elements of this formula are the following.
Each cis-regulatory module modelm is a collection of
motif modelsΘ1, . . . , Θl . The set of matching binding

sites ist = (t
k1,s
1,s , . . . , t

kl,s
l,s ), wheretk

i,s is thekth instance

of Θi on sequences, S(tk
i,s) is the score of one TFBS.

b(t) is a boolean function expressing whether the given
combination of TFBSs is classified as a valid CRM or
not. This function is determined by two parameters: (1)
overlap between different TFBSs can be allowed or not
and (2) the sites should fall within the specified window
length (default = 200 base pairs). The parameterski,s, i =
1, . . . , l, represent a count over the occurring TFBSs of
modelΘi in sequences. If the MotifScanner algorithm
returnsqi,s sites of modelΘi on sequences, ki,s can
take the values 0, . . . , qi,s . A value of ki,s = 0 means
that no instance ofΘi is found. By definitionS(t0

i,s) =
1, ∀i, ∀s. Since logS(tk

i,s) can be interpreted as the energy
of binding of thekth TFBS of Θi on sequences, this
definition makes sense (log 1= 0). The factor p(t)
functions as a penalization of CRMs that do not contain
an instance of each motif model currently in the module
model. It is the number of occurring sites in the module
divided by the number of motif modelsl in the current
module model. Penalization of incomplete CRMs can
be enabled or disabled, as required by the user. If it is
disabled,p(t) = 1, ∀s, ∀k.

The score incorporates distance constraints in the form
of a window and does not take the motif order into ac-
count. The simple score function presented here was satis-
factory for our current goals. However, more complicated
score functions based on hidden markov models could be
tested in the future, such as COMET (Frithet al., 2002).

The A∗ search algorithm Our search for the best CRM
model on a set of coregulated genes is handled with anA∗
procedure, a branch-and-bound search with an estimate
of remaining distance to the solution. It is an optimal
heuristic graph search algorithm (Hartet al., 1968). In

bioinformatics, theA∗ algorithm has already been used
for multiple sequence alignment (Lermen and Reinert,
2000). Each node in the implicit search tree is a CRM
model. Creating child nodes involves adding TFBMs to
parent CRM models. Since we do not consider the order
of sites in this step, we have removed redundant nodes
by allowing only alphabetically ordered CRM models. A
functionGm = Sm+Hm,n� is used, whereSm is the score-
function, andHm,n� is a heuristic overestimate of the rise
in score from CRM modelm to the best child CRM model
mb. The algorithm, searching for the maximal score, is
shown here:

1. Initialization

(a) Queue contains the root node as only element
(the empty CRM model).

(b) Solution is null.
(c) The parametern� is set, which is the number

of sites a module should contain.
(d) The parameters of the score function are ini-

tialized.

2. While Gm(s1, . . . , sn) ≥ SSolution(s), where m is
the first CRM model in theQueue (or while no
Solution is found yet), do

(a) Remove first CRM modelm from Queue.
(b) Do for all valid modelsΘi (Θi is valid if the

CRM model does not contain aΘ of the same
class, unless multiple copies of the same motif
model are allowed, but the latter is only true for
exactly the sameΘ):

i. Create a new CRM modelmnew,i = m,Θi
(addΘi to m).

ii. If the size of mnew,i is n�, and if
Smnew,i (s) > SSolution(s1, . . . , sn), then
Solution = mnew,i .

iii. If the size ofmnew,i does not equaln�, add
mnew,i to Queue.

(c) Sort theQueue by descendingG(s), where

Gm(s) = Sm(s) + Hm,n�(s)

with Hm,n�(s) is a heuristic function that is
an overestimate of the difference between the
score ofm and the best CRM model consisting
of n� matrices and containing all matrices of
m:

H′
m,n�

(s) = max
t

bm(t)
e∑

i=l+1

S[Θi ](s),

where l is the length of CRM modelm,
and [Θi ] is a CRM model containing one
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matrix,Θi . TheseS(tk)(s1, . . . , sn), ∀k can be
calculated before the start of the algorithm.
bm(tkl+1, . . . , tke) is a boolean function ex-
pressing whether the given combination of
motif models, when added tom, constitutes
a valid CRM model or not (2b). In case we
penalize incomplete CRMs, the heuristic
becomes

Hm,n�(s) = S ′
m(s) − Sm(s) + H′

m,n�
(s),

whereS′ andH′ are the score function with-
out penalization and the heuristic without pe-
nalization, respectively.

3. Solution now contains the optimal CRM model.

Gene Ontology statistics GO4G (http://www.esat.
kuleuven.ac.be/∼saerts/software/go4g.html) works as
follows. All annotated GO terms for a set of genes
are retrieved from the GOA annotations of the EBI
(http://www.ebi.ac.uk/GOA/). For each term, each path to
the root of the GO tree is followed and each encountered
term is added to a gene’s annotation. For each term, the
frequency of this term is then the number of genes that
have the term in their extended annotation divided by
the total number of genes in the gene set. The binomial
formula is then used to calculatep values for each
frequency, where the expected frequencies are calculated
from a large reference set, such as the complete human
genome. For the analysis described here we have used
the set of human genes that have a mouse ortholog. The
p values are then corrected for multiple testing. GO4G
can be used for testing the functional coherence of a gene
set and is therefore useful for validating predicted target
genes.

Availability within Toucan The ModuleSearcher is
included in Toucan (Aertset al., 2003) as a web service
(Stein, 2002). Toucan is a Java tool forcis-regulatory
sequence analysis and phylogenetic footprinting for
metazoan genes. It is tightly linked with the Ensembl
genome databases (Hubbardet al., 2002) for the re-
trieval of intergenic sequences, gene annotations, and
orthologous sequences. Once a sequence set is cre-
ated, the MotifScanner (Aertset al., 2003) can be
run to score the sequences with a database of posi-
tion weight matrices or the MotifSampler (Thijset
al., 2002) can be used to find over-represented motifs
using Gibbs sampling. The putative binding sites that
result from these actions can be sent to the Module-
Searcher to find the best combination of sites. Toucan
can be stArtd from a URL using Java Web Start (http:
//www.esat.kuleuven.ac.be/∼dna/BioI/Software.html).

RESULTS
Semi-artificial sequences
Table 1 lists the results obtained on semi-artificial data
(see Data & Methods). Analysis of Art1 shows that the
ModuleSearcher is able to detect a module of 5 elements
correctly (all 5 elements are found) when it is hidden in
10 sequences of 200 bp and when another 10 random
sequences of the same length are added. The results on
the Art 2 set show that the ModuleSearcher can detect 2
distinct modules that are hidden in a set of 15 sequences,
although some elements were misidentified: 4 out of
5 elements of Module 1 are correct, and 2 out of 3
elements of Module 2 are correct. Figure 2A–E shows
Art 2 when scored with the MotifScanner. It can be seen
from this figure that many implanted sites are missed in
the scoring step, which causes an important limitation on
the sensitivity of module detection.

We search for a combination of factors that is over-
represented in a set; therefore a distinction can be made
between treating all syntenic regions of one gene indepen-
dently (in that case, a set contains all regions of all genes
separately) and keeping all regions of a gene together (the
set contains all genes, each having one or more regions).
To investigate this effect, and more importantly to decide
whether to keep the regions in a real biological data set to-
gether, we tested both possibilities on semi-artificial data
as well. Comparing Art3 (where all regions are added
independently to a set) and Art4 (where multiple syntenic
regions of one gene are kept together, see Figure 2F)
shows that the second approach is advisable, so this will
be applied on the coexpressed gene set as described below.

Sensitivity to PWM scoring
Because the ModuleSearcher algorithm uses the scores of
individual matrix hits, we have compared the effectiveness
of the algorithm using different types of scoring (as de-
scribed in Methods). The Art1 set was scored with the
MotifScanner using different values for the prior parame-
ter. When 0.1 or 0.2 were used, the ModuleSearcher found
5 out of 5 correct CRM elements. Using 0.5 as a prior, it
found 4 out of 5 elements. The same set was also scored
with the MotifLocator, with varying threshold values. The
MotifLocator can be compared with other programs that
score frequency matrices such as Matinspector (Quandtet
al., 1995). Setting the threshold to 0.75 resulted in 4 out
of 5 correct elements, but this threshold yields 12 times as
many hits as for the MotifScanner with prior 0.2. A thresh-
old of 0.8 resulted in 3 out of 5 correct elements; 0.85 in
1 out of 5 and 0.9 in 0 out of 5. Taken together, the Mo-
tifScanner (with its probabilistic estimation of the number
of hits) confers robustness to the ModuleSearcher and will
be used in the Syntenic GFF database and in the study of
coexpressed genes.
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Fig. 2. Module detection in artificial data sets. A. Set Art2 as described in Table 1, showing only the implanted binding sites, sampled from
the respective matrices from TRANSFAC. B. The same set, scored with the MotifScanner using all available matrices. This is the actual
data in which the ModuleSearcher will search for modules. C. The same as in B, but now only displaying the instances of the matrices that
were implanted. It is clear that there are many false positives and many true negatives, a fact that obviously hinders module detection. D.
In blue are the results of a first run of the ModuleSearcher and in grey the implanted sites as in A. E. In red and green are two of the three
hidden matrices, as detected in a second run on the same set (masking the results of the first run) of the ModuleSearcher. F. Set Art4 as
described in Table 1, resembling the biological situation where multiple syntenic regions of one gene belong together. Only the encircled
regions have implanted modules (5 out of 40 regions), and these can still be detected. G. Six of the 20 highest scoring syntenic regions with
the CEBPA-STAF-NFY-TCF4 model that was found in the cyclin B2 microarray cluster. The closed boxes are the sites of the module and
the open boxes are putative sites of the same factors scored with a lower threshold. Taking the open and closed boxes together, each region
has at least one instance of each module factor.
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Table 1. Results of the ModuleSearcher on different sequence sets

Set name Set contents Highest scoring module Notes

Art 1

10 random sequences of 200bp, each
with following implants:


M00134-V$HNF401
M00131-V$HNF3B01
M00190-V$CEBPQ2
M00174-V$AP1Q6
M00206-V$HNF1C

+ 10 random sequences of 200bp
without implants (i.e., noise)




M00134-V$HNF401
M00131-V$HNF3B01
M00190-V$CEBPQ2
aM00188-V$AP1Q6
M00206-V$HNF1C

5 out of 5 correct.
The found module contains
all 5 hidden elements.

Art 2

5 random sequences of 200bp, each
with following implants:


M00134-V$HNF401
M00131-V$HNF3B01
M00190-V$CEBPQ2
M00174-V$AP1Q6
M00206-V$HNF1C

+ 5 random sequences of 200bp,
each with following implants:


M00054-V$NFKAPPAB01
M00747-V$IRF1Q6
M00750-V$HMGIY Q6

+

5 random sequences of 200bp
without implants (i.e., noise)
See Figure 2A

First run:


M00134-V$HNF401
M00131-V$HNF3B01
M00190-V$CEBPQ2
aM00188-V$AP1Q6
bM00328-V$PAX8B

Second run:


aM00052-V$NFKAPPAB6501
M00750-V$HMGIY Q6
bM00158-V$COUP01

The first module was found with 4
out of 5 elements correct.
The second module was found after
masking the elements of the first
module; 2 out of 3 elements of the
second module are correct.

Art 3

5 random sequences of 200bp, each
with following implants:


M00134-V$HNF401
M00131-V$HNF3B01
M00190-V$CEBPQ2
M00174-V$AP1Q6
M00206-V$HNF1C

+ 35 random sequences of 200bp
without implants (i.e., noise)




bM00446-V$SPZ101
bM00285-V$TCF1101
bM00748-V$STAT5BQ6
bM00137-V$OCT103
bM00734-V$CIZ01

The hidden module is not
found when it is present in
only 5 out of 40 sequences.

Art 4

5 genes with 1 module as in Art1
and 3 empty modules, well separated
+ 5 genes with 4 empty regions.
The empty stretches between the
regions are not scored with
TRANSFAC. See Figure 2F.




M00134-V$HNF401
M00131-V$HNF3B01
M00190-V$CEBPQ2
aM00188-V$AP1Q6
M00206-V$HNF1C

When different regions of the
same gene are grouped
together, the level of noise is
reduced and the module can
be found, with 5 out of 5
elements correct.

CCNB2 clus

Set of 13 human genes coexpressed
with cyclin B2 during the cell cycle in
HeLa cells; selected from SOURCE.
In total they have 48 conserved
sequence blocks within 10kb
upstream of the CDS. The blocks of a
gene are grouped together as in Art4.




M00116-V$CEBPA01
M00264-V$STAF02
M00287-V$NFY01
M00671-V$TCF4Q5

This result was validated by
finding target genes of the
module using the
MotifScanner, see text.

a Motif belongs to the same class as the implanted motif;
b Motif that was not implanted

Genomic searches
Using the ModuleScanner we can score the complete
‘Syntenic GFF’ database to find syntenic regions that
potentially contain a CRM. To determine the specificity

of target detection, we have compared the scores of the
sequences in the Art1 set (using the best CRM found with
the ModuleSearcher in this set) with the scores of the same
(artificial) CRM on the database. There are 6 regions (out
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of the 10 regions where we implanted it) that have a higher
score than all the regions in the database.

A second test was carried out, this time using a known
cis-regulatory module, namely the IFN-β enhancer
(Munshi et al., 1999). This module contains, within less
than 100 base pairs, functional binding sites for NF-κβ,
ATF2/JUN, IRF, and HMGI(Y) (four copies and one
overlaps with the NFκβ site). The TRANSFAC database
only contains matrices for HMGI(Y), NFκβ, and IRF-1
so we used these three to specify a module model. The
ModuleScanner scored the GFF database with this model,
and the top 10 scoring genes were fed into the GO4G
program. Table 2 shows the significantly over-represented
GO terms within these 10 genes, and it can be seen
that they are related to the response of a cell to viral
infection, the process where the IFN-β enhancer is active.
The IFN-β gene itself was found as fourth best scoring
gene. Other high scoring genes include: EH-domain
containing protein 1 (testilin, HUGO=EHD1) involved
in the recycling of major histocompatibility complex
class I molecules to the plasma membrane; IL-1β pre-
cursor (catabolin, HUGO=IL1B), an important mediator
of the inflammatory response; NF-κβ inhibitor alpha
(HUGO=NFKBIA), involved in apoptosis and possibly
pointing at feedback control mechanisms; and semaphorin
3B precursor (HUGO=SEMA3B), involved in cell-cell
signaling and possibly coregulated with IFN-β to mediate
contacts between dendritic cells and T lymphocytes. By
combining transcription factors in modules, the specificity
increases to a level where genomic searches become
feasible. This result opens the door to the validation
of predicted modules, as illustrated in the next para-
graph, because a genomic search with a false module
will retrieve random top scoring genes that have an
extremely low chance of statistical significant functional
coherence.

Detecting modules in microarray clusters
The selected gene cluster around cyclin B2 (26 genes,
see Data and Methods) is functionally tight: among
the highly significantly over-represented Gene Ontology
terms are cell cycle (15 genes,p value = 10−14), M
phase (9 genes,p value = 3.10−13), and microtubule
cytoskeleton (9 genes,p value = 2.10−7). The best module
model in the cluster, as selected by the ModuleSearcher
(window=100bp andn�=4) consisted of NFY, STAF,
TCF4, and CEBPA. It has been shown that NFY (nuclear
factor Y) regulates genes (e.g., cyclin B1) in a cell
type specific and cell-cycle dependent fashion (Katula
et al., 1997). TCF4 regulates cyclin D1 expression in a
complex withβ-catenin (Tetsu and McCormick, 1999), so
its involvement in cell-cycle specific expression of other
genes is plausible. CEBPA (CCAAT/enhancer binding
protein alpha) overlaps with some of the NFY sites (see

Figure 2G), which could explain its presence in the
module. The fourth element, STAF, is a zinc finger protein
that is a promiscuous activator for enhanced transcription
by RNA polymerases II and III (Schaubet al., 1997).

Using the [STAF-CEBPA-NFY-TCF4] module in a
genomic search with the ModuleScanner shows indeed
that this combination contains cell-cycle specific regula-
tory information, because (1) 30.8% (4 out of 13) of the
original cluster is found in the top 100 scoring genes, and
(2) the GO4G statistics on the top 20 scoring genes show
a significant (correctedp value smaller than 0.05) for
terms like ‘mitosis’, ‘regulation of cell cycle’, and ‘cell
proliferation’ (see Table 2). Figure 2G shows the actual
modules in some of the top 20 scoring cell cycle genes.
Polo-like kinase (PLK) is possibly active in chromosomal
segregation, NEK2 is involved in chromosome segrega-
tion and centrosome separation. CDC2 (cell division cycle
2) is a catalytic subunit of the highly conserved protein
kinase complex known as M-phase promoting factor
(MPF), which is essential for G1/S and G2/M phase tran-
sitions of eukaryotic cell cycle. CKS1B is also known as
CDC2 associated protein so its coregulation with CDC2 is
plausible.

CONCLUSIONS
The ultimate goal of every technique forcis-regulatory
sequence analysis is to detect real binding sites for tran-
scription factors that can explain a particular expression
profile of a gene. In studies in organisms with compact
genomes and with a limited complexity of cooperativity,
such as yeast, the detection of over-represented binding
sites in the promoters of the genes in a microarray cluster
(Tavazoieet al., 1999) yields valuable clues in understand-
ing several aspects of transcriptional regulation, especially
in combination with genomewide location analysis (Leeet
al., 2002).

To test the rather ambitious thought that our methodol-
ogy could help in analogous studies in human, we have
first tested the proposed algorithms on artificial data and
showed that we could find back the hidden modules with a
high sensitivity (i.e., after adding multiple sequences with-
out the module), even if many of the implanted sites are
missed by the matrix scoring step. The influence of the
latter on the robustness of module finding was also tested
and it was shown that our probabilistic estimation of the
number of hits is more reliable than traditional log odds
scoring. Another test showed that the signal to noise ratio
is much higher when the syntenic regions of a gene are
kept together instead of separating them.

Our current program always finds a ‘best’ module model
in a set of sequences. Therefore, it is necessary to validate
the module. Some possibilities are (1) the ability to re-
trieve target genes in the genome, (2) functional coherence
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Table 2. Validating putative target genes found by the ModuleScanner using GO4G

Genes Significant GO terms Correctedp value

Top 10 scoring genes for a simplified
IFN-β enhancer:


M00750-V$HMGIY Q6
M00054-V$NFKAPPAB0
M00747-V$IRF1Q6

apoptosis
negative regulation of cell proliferation
protein amino acid dephosphorylation
response to pest/pathogen/parasite
protein phosphatase activity
innate immune response
cytokine activity
response to stress
phosphoric monoester hydrolase activity
cell communication

0.002046759
0.003660635
0.004239594
0.005201112
0.006733237
0.010171468
0.012253669
0.014523294
0.015017083
0.031928904

Top 20 scoring genes for a new
module found with the
ModuleSearcher on a set of cyclin B2
coexpressed genes:


M00116-V$CEBPA01
M00264-V$STAF02
M00287-V$NFY01
M00671-V$TCF4Q5

mitosis
M phase of mitotic cell cycle
cytokinesis
nuclear division
regulation of cell cycle
protein serine/threonine kinase activity
obsolete
cell proliferation

0.000435808
0.000452022
0.000468573
0.001257531
0.001395887
0.010734361
0.024402181
0.026461498

Terms with at least 2 occurrences and correctedp value smaller than 0.05 are shown. When both parent and child terms were significant, only the child is
shown.

of predicted target genes, (3) structure conservation of the
modules in the training set and in the top scoring database
modules, and (4) phylogenetic footprinting. Structure con-
servation can imply conserved strand preferences or dis-
tances between binding sites. Here we have only used (1)
and (2). We tested these approaches using the known IFN-
β enhancer model and the results show that real module
models are specific enough to find back their instances in
the full genome.

Lastly we predicted a module in a set of coexpressed
genes and validated the prediction using the same ap-
proach. It was shown that module detection can yield
valuable hypotheses and these can ultimately help in
cracking the complex gene regulatory code.

How exactly the top scoring genes are related to
the modules remains to be investigated. We believe
however that using the described approaches, thein silico
generated hypotheses regardingcis-regulation should have
a higher success rate compared to approaches based on
single factors or that do not take cross-species sequence
conservation into account.

Regarding future developments, it will be feasible to
perform module detection analysis on several kinds of
gene sets (expression clusters, protein complexes, text-
based clusters, and so on) to build a database of hypotheses
on cis-regulation. Here, a biologist who is working on the
regulation of his ‘pet gene’ could filter his list of his own
wet-lab hypotheses by checking whether relatedin silico
hypotheses exist in the database.
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