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ABSTRACT

TOUCAN is a Java application for the rapid dis-
covery of signi®cant cis-regulatory elements from
sets of coexpressed or coregulated genes.
Biologists can automatically (i) retrieve genes and
intergenic regions, (ii) identify putative regulatory
regions, (iii) score sequences for known transcrip-
tion factor binding sites, (iv) identify candidate
motifs for unknown binding sites, and (v) detect
those statistically over-represented sites that are
characteristic for a gene set. Genes or intergenic
regions are retrieved from Ensembl or EMBL,
together with orthologs and supporting information.
Orthologs are aligned and syntenic regions are
selected as candidate regulatory regions. Putative
sites for known transcription factors are detected
using our MotifScanner, which scores position
weight matrices using a probabilistic model. New
motifs are detected using our MotifSampler based
on Gibbs sampling. Binding sites characteristic for
a gene setÐand thus statistically over-represented
with respect to a reference sequence setÐare found
using a binomial test. We have validated Toucan
by analyzing muscle-speci®c genes, liver-speci®c
genes and E2F target genes; we have easily
detected many known binding sites within inter-
genic DNA and identi®ed new biologically plausible
sites for known and unknown transcription factors.
Software available at http://www.esat.kuleuven.ac.
be/~dna/BioI/Software.html.

INTRODUCTION

Genomes contain vast amounts of cis-regulatory DNA
responsible for directing spatial and temporal patterns of
gene expression in response to metabolic requirements,
developmental programs and a plethora of external stimuli
(reviewed in 1). Genes of multicellular organisms contain both
proximal modules (with the promoter-proximal elements) and
distal modules (enhancers and silencers), as well as a basal
transcription apparatus (i.e., a TATA box or another element
to position RNA polymerase II). Distal modules can lie many
kilobases on either side of a coding region or within an intron.

Each module may contain multiple binding sites that interact
with a speci®c combination of transcription factors (2). The
characterization of such regions is a fundamental step toward
understanding the largely unexplored networks of gene
regulation.

DNA microarrays and other functional genomics technolo-
gies are frequently used to yield sets of coregulated genes to
®nd common regulatory modules. Several tools and algo-
rithms already exist for comparative sequence analysis, for
scoring known transcription factor binding motifs (TFBMs)
using position weight matrices (PWMs), for detecting new
patterns using Gibbs sampling techniques (3,4), and for
clustering binding sites to ®nd regions where their local
density is high (5,6). In most cases, however, a combination of
approaches is required to minimize false positives (7,8). This
research domain is extensive, and since not every biologist has
access to the bioinformatics expertise to integrate several tools
and web applications, biologists will bene®t from an ef®cient
tool to perform their regulatory sequence analysis. Further-
more, if such analyses are carried out on a large scale, the
ef®cient retrieval of promoter sequences is essential. This task
is now becoming more straightforward for organisms with
fully sequenced genomes. By querying genomic databases like
Ensembl (9) for a gene and walking up- or downstream from
it, the intergenic regions can be retrieved.

Toucan allows the user to construct a gene set by importing
or retrieving sequences from local or online sources, to
visualize, manipulate, cut and export sequences, to select
putative regulatory regions, to score and annotate sequences
with putative binding sites, to ®nd new motifs, and to perform
a statistical analysis to select over-represented sites. Toucan
was designed with the analysis of regulation in gene sets of
higher eukaryotes as its primary goal. It is in this setting that it
provides the user with the most added value as compared to
existing tools. The web-based Regulatory Sequence Analysis
Tools (10) was designed for the analysis of prokaryotic and
yeast sequences. Sequences of such organisms with compact
genomes can also be analyzed with Toucan but the bene®ts of
Toucan will be more limited (e.g., Ensembl access is not
available and the current comparative sequence analysis
methodology is not well suited to these cases). Tools like
rVISTA (7) and TraFaC (11) work on higher eukaryotic
sequences and also use comparative sequence analysis to
detect transcription factor binding sites in a sequence, but they
work with single genes and have a less integrated scope. The
Genomatix software (http://www.genomatix.de) shares the
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integration aspect with Toucan, but does not use comparative
sequence analysis to detect distal regulatory regions
(PromoterInspector predicts only proximal promoters). In
fact most of the existing tools for regulatory sequence analysis
are compatible with Toucan as long as their output is
formatted as, or can be converted to, Sanger's General
Feature Format (GFF, see http://www.sanger.ac.uk/Software/
formats/GFF). Toucan has both the advantages of a local
installation (e.g., a higher user interactivity) and the advan-
tages of distributed computing by using new technologies
like web services (12). The BioJava library (http://www.
biojava.org) is used as the back-end for most of the biological
sequence manipulations.

METHODS

Java and BioJava

Toucan was developed using the Java 2 SDK version 1.4.1
(Sun Microsystems). It has been tested under the Windows,
Linux and MacOS operating systems. The application can
either be run directly from our website using Java Web Start or
it can be downloaded from http://www.esat.kuleuven.ac.be/
~dna/BioI/Software.html. The BioJava library was used and
can be downloaded from http://www.biojava.org.

Web services

The MotifScanner, MotifSampler and AVID/VISTA pro-
grams are used through web services using the Apache
implementation of Simple Object Access Protocol, version
2.3. The services, which reside on a Tomcat server, start the
actual programs on a Linux cluster with 10 nodes using Java
Remote Method Invocation.

Online sequence and information retrieval

Ensembl gene identi®ers and the identi®ers of orthologous
genes are retrieved from other database identi®ers directly
from the Ensembl MySQL database at kaka.sanger.ac.uk.
Sequences and ¯anking regions are retrieved from Ensembl
using HTTP access on the Export functionality of Ensembl.
Using HTTP queries and XEMBL access, sequences are also
retrieved from the EMBL nucleotide sequence database.

MotifScanner

To search for instances of a known motif we have built a new
algorithm from the core modules of the MotifSampler (4,13).
The basic sequence model assumes that binding sites are
hidden in a noisy background sequence. The model of the
binding sites is based on a frequency residue model and is
represented by a position probability matrix QW of length W.
The background model is represented by the transition
matrix Bm of a mth-order Markov model. The usage of a
higher-order background model allows to better distinguish
between motifs that occur frequently throughout the genome
and the ones that are speci®c to a certain region. If the start
position of the motif instance is known and indicated by a,
then the probability that the sequence is generated given the
model parameters is

P�S j a;QW ;Bm� /
Yaÿ1

l�1

P�bl j S;Bm�
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j�1
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where L is the length of the sequence, bl is the nucleotide at
position l in the sequence S, QW(j, ba + j ± 1) is the probability
of ®nding b at position j in the motif model, and P(bl|S, Bm) is
the probability of ®nding bl in the sequence according to the
background model. This formula is easily extended to multiple
instances of the motif model by adding more motif terms to
equation 1.

Estimating number of motif instances. The aim of the
algorithm is to ®nd the number of instances of a known
motif model in the input sequence. To solve this problem we
should compute the expected number of instances Q as

ES;QW ;Bm
�Q� �

X1
c�0

c� P�Q � c j S;QW ;Bm�: 2

To compute equation 2 we need to estimate the probability
P(Q = c|S, QW, Bm) of ®nding c instances of the motif in the
noisy background sequence. Applying Bayes' rule to this
probability leads to

P�Q � c j S;QW ;Bm� �
P�S j Q � c;QW ;Bm�P�Q � c j QW ;Bm�

P�S j QW ;Bm� : 3

We can distinguish three different parts in equation 3. The
denominator P(S|QW, Bm) serves as the normalization factor.
The ®rst term P(S|Q = c, QW, Bm) of the numerator is the
probability that the sequence is generated by the motif model
QW, the background model Bm, and contains c motif instances.
This probability can be calculated by summing over all
possible non-overlapping combinations of c motifs in
sequence S.

P�S j Q � c;QW ;Bm� �
X

a1

:::
X

ac

�P�S j Ac;Q � c;QW ;Bm�P�Ac j Q � c;QW ;Bm��; 4

with Ac the set of c start positions a1,¼,ac. By applying
equation 1, this equation can be ef®ciently computed in linear
time. Assuming that each position is equally probable, the
factor P(Ac|Q = c, QW, Bm) is replaced by a constant inversely
proportional to the number of possible combinations of c motif
instances in a sequence of length L. Within this model, we see
the motif instances in the context of the noisy background
sequence. This implies that the longer the sequence is, the
harder it is to ®nd an instance within this noise. Therefore, in a
long sequence only those instances that have a very high score
with the motif model rise above the noise level and can be
selected. The second term P(Q = c|QW, Bm) in the numerator is
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the prior probability of ®nding c instances given the motif
model and the background model. Let us de®ne P(Q = c|QW,
Bm) as g0(c). Since the complete prior distribution is not
known, we propose one. There are two conditions to construct
this distribution: (i) S`

c = 0g0(c) should be equal to 1; (ii) for all
c > 1, g0(c + 1) is smaller than g0(c). The user should de®ne
only g0(1), a value between 0 and 1, as the probability of
®nding 1 instance. Initially g0(0) is set to 1 ± g0(1) and the
remainder of the distribution g0(c) is set to kg0(c ± 1) and the
distribution is then normalized. We use k = 0.25. The effect of
lowering the prior is that E[Q] decreases and that less
instances will be selected. Normally, we should compute the
sum in equation 2 for c from 0 to `. Since this is unpractical,
we propose to compute the next term in the distribution
P(Q = c|S, QW, Bm) as long as the previous value is larger than
a prede®ned small value e (e.g., 0.0001).

Algorithm. The previous de®ned formulas can be combined to
create the following algorithm. For each sequence S in the data
set do: (i) score sequence S with motif model QW; (ii) score
sequence S with background model Bm; (iii) initialize P(Q =
0|S, QW, Bm) and P(Q = 1|S, QW, Bm); (iv) while P(Q = i|S, QW

, Bm) > e augment i and update P(Q = c|S, QW, Bm) for c = 0¼i
using equation 3; (v) compute the expected number of copies
ES,q,Bm

[Q] with equation 2; and (vi) select the Q best scoring
positions as motif instances.

MotifScanner is implemented in C++ and in addition to its
use in Toucan through a web service we also provide a web-
based version and a standalone version at our website: http://
www.esat.kuleuven.ac.be/dna/BioI/Software.html. Further
details about the in¯uence of the prior probability and the
length of the sequence on the detection rate of the
MotifScanner can also be found at the MotifScanner
website.

Statistical analysis

The calculation of a p value and a signi®cance score for each
motif was done as described in van Helden et al. (14), where it
was developed to detect over-represented hexanucleotides
within the upstream regions of families of coregulated genes
in yeast. The frequency of binding sites observed throughout
large reference sets like all the promoters in the Eukaryotic
Promoter Database (EPD) or a large set of randomly selected
putative regulatory regions from Ensembl are used to estimate
the expected frequency for each motif m, Fe{m}. These
expected frequencies are used to calculate the number of
expected occurrences for each motif in the set of regulatory
regions under analysis:

E�occfmg� � Fefmg � 2�
XS

i�1

�Li ÿ w� 1� � Fefmg � T1;

where T is (by de®nition) the number of possible start
positions, Li is the length of the ith sequence and w is the
length of the motif. The probability to observe exactly n
occurrences of the motif m is estimated by the binomial
formula:

P�occfmg � n� � T!

�T ÿ n�!� n!
�

�Fefmg�n � �1ÿ Fefmg�Tÿn:

The probability to observe n or more occurrences of the motif
m is:

P�occfmg � n�
XT

j�n

P�occfmg � n�:

A signi®cance coef®cient sig is used to select the most over-
represented patterns:

sig = ± log10[P(occ{m} > n) 3 D]

where D is the number of distinct motifs that are used.

Matrix similarity

The similarity between two motifs, M1 and M2, is measured
with the mutual information or Kullback±Leiber distance (15).
The mutual information is computed as

1

W

XW
j�n

XT

b�A

M1�j; b�log
M1�j; b�
M2�j; b�

where M1(j, b) is the probability of ®nding base b at position j
in Motif 1. Since this equation is asymmetric, we take the
average between the distance from M1 to M2 and from M2 to
M1.

RESULTS

Toucan Overview

An analysis in Toucan starts with the creation of a set of
sequences that might share a common cis-regulatory element
or modules consisting of multiple elements. The goal is to
identify signi®cant elements and to visually inspect them.
Possible sequence sets could be derived from gene clusters
from microarray data analysis, from known target genes of a
transcription factor, from putative target genes of a gene
regulatory network, or genes involved in the same biological
pathway, process or tissue (16,17).

Constructing sets of regulatory sequences

There are three different ways to import DNA sequences into
Toucan. First, local sequence ®les in fastA, EMBL or
GenBank format can be imported, either as separate sequences
or as multiple sequences in one ®le. Secondly, sequences can
be retrieved automatically from the EMBL nucleotide
sequence database using a list of accession numbers.
Thirdly, complete genes with their ¯anking regions (or
optionally only the ¯anking regions) can be retrieved from
the Ensembl genome database for all available organisms. In
that case any identi®er available in the Ensembl database can
be used. For human genes these identi®ers currently are
Ensembl gene, SWISSPROT, EMBL accession number,
protein_id, MIM, HUGO, Gene Ontology, PDB, RefSeq,
LocusLink, SPTREMBL and Interpro. Sequences of
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orthologous genes can be retrieved simultaneously for the
genes that have an ortholog correspondence in the Ensembl
database.

Next, we wanted to give a solution for the detection of both
proximal promoter regions and distal regulatory regions
within the large sequences that are retrieved in this way.

Figure 1. Representation of the genomic region 2000 bp upstream of Exon 1 annotation in Ensembl and 200 bp after the start of Exon 1, taken from 4000 ran-
domly selected genes from the human genome (homo_sapiens_8_30a database at kaka.sanger.ac.uk). The relative position of 0 on the x-axis is the start of
Exon 1. (A) Percentages of A, C, G and T at each position. (B) Number of instances of a SP1 binding site at each position.
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The presence of a promoter within the 5¢ ¯anking region of a
gene can be predicted by annotating CpG islands (18), which
is included in Toucan. Promoter predictions using more
sophisticated algorithms (e.g., PromoterInspector; 19) can be
annotated on the sequences if the output of such external tools
can be converted to GFF. Another approach is to predict the
transcription start site (TSS) itself (e.g., by using Eponine; 20).
Eponine outputs its predictions in GFF by default so they can
be directly applied on the active gene set. In all these cases,
however, the coverage of annotated promoters is limited to
50±60% at most (19).

We therefore investigated whether genome annotation
databases like Ensembl contain enough information (e.g., in
the form of known transcripts mapped to the genomic
sequence) to extract the location of the TSS. We believe that
in most cases the start of the Exon 1 annotation in Ensembl,
which lies generally further upstream than the ATG start
codon, coincides with the TSS of the gene. If that is true, then
sequences directly upstream of Exon 1 would contain the
promoter-proximal sequences that we are interested in. It
would also imply that we would not need to use promoter
prediction tools and thus we would not be restricted to the
limitations described above. To prove this statement, we have
retrieved 2000 bp upstream of Exon 1 for 4000 randomly
selected genes from the human genome. First, we calculated
the percentages of A, C, G and T at each position in this stretch
of DNA (Fig. 1A). The G/C content rises when approaching
position 1 of Exon 1 and drops again after this position. We
cannot think of any other DNA signal with such impact on the
GCAT content than the TSS. A similar ®nding can be
observed in the regions upstream of the ATG start codon in
yeast (21). A second proof of this statement is the rise in the
number of putative SP1 binding sites that occur within these
4000 regions (Fig. 1B). Since SP1 is known to be a proximal
cis-acting factor (22), this analysis shows that is it likely that
the ®rst 500 bp upstream of the TSS are predominantly
promoters. Because the goal of the analysis is to ®nd over-
represented motifs in sets of genes, and not in individual
genes, it is still acceptable that for some genes in the set we
would not have the correct promoter-proximal sequences if for
these the start of Exon 1 would not be the TSS (e.g., if longer
and yet unknown transcripts exist).

To predict other putative regulatory regions that lie more
distal from the TSS, genomic sequences of the genes and their
¯anking regions can be aligned with the same regions of
orthologous genes. For this purpose, highly specialized

alignment algorithms exist like AVID (together with its
visualization tool VISTA) (23,24), Bayes Aligner (25), DNA
Block Aligner (26) or PipMaker (27). The AVID/VISTA tools
can be used transparently through a web service. For the other
tools, we provide an online GFF toolbox at our website to
convert their alignment outputs to GFF. After annotation of
the latter, the similar parts in the upstream sequences of the
orthologs can be selected to construct a new sequence set for
the analysis of regulatory elements. Alternative approaches
could be (i) to use Alfresco (28) (which is a visualization tool
that integrates multiple tools for comparative sequence
analysis) or related tools, save interesting regions as GFF,
and import these into Toucan; or (ii) to retrieve syntenic
regions directly from specialized databases like CORG (29).
Figure 2C shows an example of a sequence set.

Scoring transcription factor binding sites

In Toucan, a set of sequences can be annotated with IUPAC
consensus sequences. A string containing IUPAC symbols is
translated into a regular expression, which is used to ®nd
matching positions on both sequence strands (e.g.,
WWC{2,3}AA becomes [at][at]c{2,3}aa internally). More
re®ned methods are based on scoring sequences at each
nucleotide with PWMs (e.g., MatInspector; 30,31). PWMs
provide a quantitative rating (score) suggesting likelihood of
protein binding to the site analyzed. A selection of positive
hits is then made by imposing a threshold on the normalized
scores. Here we introduce a new algorithm for scoring
sequences with PWMs, MotifScanner. The method is based
on a sequence model which states that the binding sites are
hidden in a noisy background sequence. We use this
probabilistic model to estimate the number of instances of a
motif in a speci®c sequence, given the background model and
the motif model, instead of using a prede®ned threshold that is
independent of the sequence being scored. The advantages of
this method can be summarized as follows. First, by choosing
an appropriate background model for the sequences to be
scored we can reduce the number of false positive hits (32).
For example, when scoring human promoter sequences using a
3rd-order background model that is calculated from a large set
of human promoters, a putative motif instance would need a
higher resemblance to the PWM to be a positive hit than when
using a background model of mouse sequences to score the
same human promoters. Another example can be given by the
fact that a A/T rich motif scores higher with MotifScanner in a
G/C rich context than in a A/T rich context. Because the

Figure 2. (Previous page) Screenshots of Toucan during the analysis of liver-speci®c genes. (A) Dialog where all gene names (HUGO symbols) are entered
as a comma separated list. In the second drop-down box `Human' is selected to search for and retrieve human genes. All organisms that are available in
Ensembl (see http://www.ensembl.org) can be chosen from this list, and in the `Preferences' menu the user can update these settings if Ensembl were to add
new organisms. Depending on which organism is chosen, the third drop-down box shows all available external database identi®ers that can be mapped to a
stable Ensembl gene. The fourth drop-down box allows to choose between `complete gene', `upstream of CDS' and `upstream of Exon 1'. The latter
corresponds in most cases to the region upstream of the TSS. The text boxes labeled with `bp before' and `bp within' state how many base pairs should be
retrieved as ¯anking sequence upstream or around the speci®ed region. In the last drop-down menu `mouse' is selected to retrieve also the mouse orthologous
sequences for each human gene in the list. (B) Every region that seems likely to contain putative regulatory modules (e.g., because it is conserved between
species or because it contains a CpG island) can be selected and added to a sequence sublist. (C) Feature map. All open boxes represent regions that are at
least 75% similar with their respective orthologous region, resulting from the AVID/VISTA web service. (D) Matrices, background model, and all other
parameters are set in the dialog box of the MotifScanner. (E) Dialog showing the background models on our server. The values are retrieved transparently
through the web service when the user presses the `GET' button. (F) The results of the MotifScanner can either be saved or can be automatically added as
features on the currently active sequence set. (G) Results of using the binomial formula to detect over-represented motifs. n is the number of occurrences of a
binding site within this set, the third column is the p value for this motif, the fourth column the sig value (see Methods). The top scoring motifs for the
human±mouse conserved regions in 10 kb upstream sequence of liver-speci®c genes are shown.
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presence of a motif in a dissimilar context can imply a
functional conservation we believe that its detection should
indeed be promoted. Secondly, by estimating the number of
motif instances instead of using a threshold, only the best
matching instances are considered as hits instead of all the
instances that score above a certain threshold. This approach
re¯ects the situation in a cell where a transcription factor is
bound more often to the stronger sites than to the weaker sites.
However, if one also wishes to select the weaker sites then the
prior parameter can be increased, the sequences trimmed (to
remove noise), or a matrix scoring program can be used.
Because this algorithm has not been described before, we
elaborate on it in the Methods section.

The user can transparently use this algorithm as a web
service from within Toucan and the resulting GFF formatted
output can be applied to the active sequence set. By clicking
on a feature of a sequence (a colored box) the information on
this feature is shown in the bottom window of the application,
in this case it is the name of the transcription factor, the actual
sequence instance and the matching score. This score is the
absolute value of the ratio between the probability of the site
being generated by the motif model and the probability of the
site being generated by the background model. The PWM
databases and background models that are used by the service
reside on the server and can be selected within a dialog
window in Toucan (see Fig. 2D, E and F).

A binomial distribution model is used to correlate all
annotated features with a p value and a signi®cance score based
on their occurrence in the sequence set and relative to their
expected frequency (see Methods and Fig. 2G). The expected
frequency of a feature can be approximated by calculating the
respective actual frequencies, expressed as occurence per base
pair, either from another sequence set or from a general
(genome-wide) reference set (e.g., all promoters in the EPD).
At our website we provide several ®les with expected
frequencies calculated from the EPD or from the upstream
regions of random gene subsets from complete genomes.

Detecting new patterns using Gibbs sampling

Unfortunately, some factors are not suf®ciently well described
to allow the construction of reliable weight matrices. For this
reason, current PWM databases (like TRANSFAC; 33) and
the supporting scoring algorithms can only characterize part of
the logic of cis-regulatory regions. It is therefore useful to
search directly for statistically over-represented motifs (which
may possibly correspond to yet unknown TFBMs) in the DNA
of a regulatory sequence set. To ®nd such motifs, our
MotifSampler (4) (which is a probabilistic method for motif
®nding based on Gibbs sampling) can be accessed through a
web service. This algorithm uses the same probabilistic
framework as in the MotifScanner to estimate the expected
number of copies of a motif in a sequence set and also uses a

Table 1. Statistically over-represented TFBMs in several gene sets

A E2F targets B Muscle-speci®c C Liver-speci®c
A1 Proximal B1 Exp. B2 Proximal B3 Syntenic C1 Exp. C2 Proximal C3 Syntenic

E2F ***** SRFa ***** ***** ***** HNF1a ***** ** *****
ETF ***** Myogenina ***** ***** ***** HNF3a * ****
SP1 ** MAZ ***** * ** HNF4a * **

MYODa ***** IPF ****
HEB ***** *** AP1 **** **
LBP1 ***** * **** C/EBPa *** **
MEF2a ***** ** COUP ** **
SP1a ***** * FOX * **
MZF ***** * * VMAF ****
MINI **** TCF4 ***
LMO2COM **** DBP **
MAZR **** *** FXR **
E12 **** ERR **
MEF3 ****
RREB *****
ZIC ** **
LYF **
VDR **
GC **
TFIII **
TEFa * *
AP4 *** ***
RSRFC4 ****
STAT6 ****
CP2 **
PAX4 **

Constructed from the output of the statistical analysis in Toucan, after scoring the sequence sets with all vertebrate matrices of TRANSFAC version 6.1, and
with the prior parameter of the MotifScanner set to 0.2 and a 3rd-order background model of human (A) or vertebrate promoter sequences (B and C).
Symbols: ***** sig > 5; **** sig > 4; *** sig > 3; ** sig > 2; * sig > 1. (A) Promoter sequences (500 bp 5¢ upstream of Exon 1) of eight E2F target genes.
(B1 and C1) Muscle and liver, respectively, regulatory region collections from Wasserman and Fickett (17) and Krivan and Wasserman (16); labeled as `Exp.'
(B2 and C2) Promoters retrieved from Ensembl: 500 bp upstream of Exon 1; labeled as `Proximal'. (B3 and C3) Syntenic regions (minimal 75% identity in
100 bp windows), selected after aligning human±mouse pairs of the genes with 10 kb ¯anking region, using AID and VISTA; labeled as `Syntenic'.
aFactors used in Wasserman and Fickett (17) and Krivan and Wasserman (16).
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higher-order background model based on a Markov chain. The
web service returns, besides its GFF output, also the position
probability matrices of the motifs which can afterwards be
used to scan related sequence sets using the MotifScanner
service.

Case studies

We have performed several analyses on human gene sets.
They serve both as a biological validation of Toucan and as
examples for the user. In the ®rst example DNA regions of
500 bp directly upstream of the start of Exon 1 (as annotated in
the Ensembl database) of eight known E2F target genes are
investigated. Table 1A lists all factors with a sig factor >2. In
the second example we investigated a set of liver speci®c
genes and a set of muscle speci®c genes. We tested whether
certain binding sites of known transcription factors would
be over-represented in either known regulatory regions,
promoter-proximal regions or mouse-syntenic regions of
these genes. It is shown that the retrieval of orthologous
sequences (human and mouse) enables the selection of
putative regulatory regions through comparative sequence
analysis. Starting from upstream sequences tens of kilobases
long, this selection narrows down the search region for
regulatory modules to a couple of hundred base pairsÐthis
length restriction is essential for the detection of over-
represented motifs (if not, the over-representation statistic is
buried by the sequence noise). In Table 1B and C we report all

factors with a sig factor >2 in at least one of the three analyses
performed (also see the Methods section). Lastly, in the third
example we use the mouse syntenic regions of muscle and
liver genes again for the detection of over-represented DNA
words using the MotifSampler, and we show that the results
are comparable to those of the second example, and that they
can contain extra information.

E2F target genes

In this example, we investigated eight human genes of which
the E2F complex is a known regulating transcription factor:
CAV1, CDC6, MYC, DHFR, E2F2, RBL1, TK1 and RB1.
Since E2F mostly binds to the proximal promoter of its target
genes, a region of 500 bp upstream of the putative TSS (start
of Exon 1) was obtained from Ensembl.

All retrieved sequences are visualized in a sequence feature
map (Fig. 3). Next we have scored these sequences with
PWMs that reside on our server by using the MotifScanner
web service. The matrices, background model and all other
parameters are set in a dialog box (see Fig. 2D and E). The
results of the MotifScanner can be automatically added as
features on the currently active sequence set. Although a low
prior (0.2) was used, most of the sequences are packed with
putative binding sites. Running the binomial analysis we could
select the signi®cantly over-represented motifs (see Table 1A).
The expected frequencies needed for this statistic were
calculated by scoring the same matrices on all human

Figure 3. Promoter regions of eight E2F target genes with the over-represented TFBMs. The sequences were retrieved from Ensembl starting from a comma
separated list of HUGO symbols and choosing `upstream of Exon 1', 500 `bp before' and 10 `bp within'.
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sequences in the EPD (see http://www.epd.isb-sib.ch/) (see
Methods). The presence of E2F, ETF and SP1 was signi®cant
(sig > 2). Figure 3 shows the sequence set with the instances
of these motifs annotated. The presence of two to three
putative ETF binding sites in almost all E2F target genes is
interesting since this is also the case in the mouse p53
promoter, which is bound by E2F and ETF upon adenovirus
infection in the presence of the Early 1a protein (34).

Muscle and liver-speci®c genes using TRANSFAC

Wasserman and Fickett (17) and Krivan and Wasserman (16)
have compiled and analyzed respectively muscle-speci®c and
liver-speci®c regulatory regions that are experimentally
veri®ed. They found a signi®cant occurrence of speci®c
binding site clusters within these regions. We have done a
regulatory analysis on their training set sequences using
Toucan. The fastA formatted sequence ®les were downloaded
from http://bio.cse.psu.edu/mousegroup/Reg_annotations/ and
loaded straight into Toucan (after removing blanks within the
sequences). We used the MotifScanner with the TRANSFAC
collection of vertebrate matrices, a prior of 0.2, and a
background model of vertebrate sequences of EPD. The result
of the statistics applied afterwards are represented in Figure 2F
and Table 1, columns B1 and C1. Some of the motifs are
known to be muscle speci®c: SRF, myogenin, MYOD, MEF-2,
MZF, MINI and MEF-3; so their presence in these sequences is
not surprising. The only muscle-speci®c factor that was used in
Wasserman and Fickett (17) that we could not con®rm with sig
> 2 is TEF. Some others can interact with muscle-speci®c
factors: E12 (dimerizes with MYOD and myogenin of the Myf
family) and HEB (interacts with E12 and myogenin). The
®nding that their actual binding sites are signi®cantly present in
these sequences is new. The detection of SP1 is not surprising
since it is a general promoter element. Some of the remaining
factors may not be muscle speci®c but they may play a role in

transcriptional regulation in certain circumstances. Vitamin D
receptor (VDR) for example is involved in the genomic
response of avian embryonic skeletal muscle cells to vitamin
D3 (35), LMO2 (LIM-only protein) may play a role in
differentiation and myo®brillogenesis of heart (36) and LBP-1
(UBP-1) binds at the promoter of skeletal troponin I (37). For
the remaining factors we could not ®nd any references that
point to regulation of muscle genes. These are MAZ (Pur-1,
Zif87), MAZ related factor (MAZR), ZIC and Ras-responsive
element binding protein (RREB).

An analogous analysis on the set of liver-speci®c regions
shows similar results, although fewer factors have over-
represented sites. Of the factors having sig > 2, HNF and
C/EBP were also used by Krivan and Wasserman (16) and are
known to be liver speci®c. Other signi®cant factors include
COUP, which may antagonize with HNF-4 (38), and Insulin
Promoter Factor (IPF). Mutations in IPF or HNF both result
in a common progression of maturity-onset diabetes of the
young (MODY) (39). Their involvement in cis-regulation may
therefore be an interesting hypothesis. The last one is AP1, a
general regulatory factor.

Although these analysis give remarkably good results,
starting from experimentally determined regulatory regions
considerably facilitates the analysisÐwhile obtaining such
regions experimentally is dif®cult. Therefore, we tested
another approach starting only from approved HUGO sym-
bols, and retrieving the sequences automatically from the
Ensembl database. We used the same genes that were
represented in the set of known regulatory sequences used
above: for the muscle set these are CHRM2, CHRM3, ACTC,
CKM, DES, MYF6, MYOG, MYL1, MYLA, TNNI3,
MYHCA, ACTA1, DMD, ANF and ALDOA; and for the
liver set these are ALDOB, APOB, CYP2H1, CYP7A1, DDC,
G6PC, GC, IGF1, INS, PAH, PROC, SLCA2, SULT2A2,
SULT2A1, TTR and UGT1A1.

Table 2. Statistically over-represented DNA motifs

A Muscle-speci®c B Liver-speci®c
Motif consensus sig PWM similar to Motif consensus sig PWM similar to

AsCTGGTGwk ***** - TTkGmTnAry ***** -
nGCCyGGkyC ***** - wrkkkAmTwA ***** -
GGGrCnGGks ***** - nTkATTGAnnwA ***** HNF1
CnyCTCyCTC ***** MAZ nCnwAGkTmA ***** PPARA
rGGGnwGGGGC ***** MZF kAwGwGTyTG ***** SRY
AAGCCT **** HSF nTTTGmTywr ***** DBP, HNF3
rCCTGGk ** - wGTyAwT ***** HNF1, AFP, IPF, FXR, MEF2, AMEF2, COMP1
GsAGGGG ** - CTwnGTmn ***** MIF1, PPARA
rCCCAGs ** HEN1, STAF ACyTAsn ***** BRACH
ACCCAG ** CP2, RORA2, STAF, PPARG TTwwTsmTTnrC ***** HNF1
GGGCwG * SP1 nATTnGCT ***** DBP, HNF3
CCTGCT * HEB, MYOGENIN, E12, E47 TTGAyTwwnrGw ***** -
GGGrmAGG - ynnGAsyTTnnn ***** -
CCTGGsnCnGG - CTAnGTm ***** -
GCTGCCC - AAkywAAT ***** HNF3, HNF1

TwArTC ***** HNF6
CTGrTT *** NFY, AP4
CTkTGA TCF4, ATF, ER, PPARG, GFI

Detected by the MotifSampler in the muscle and liver syntenic regions, using a prior of 0.2 and several motif lengths (6, 7, 8, 10 and 12 bp). Each analysis
was repeated 10 times for four different motifs. The resulting motif models were compared to remove redundant models. For each motif, the scoring matrices
of TRANSFAC (professional version 6.1) that are highly similar to the motif models are listed in the third column. Models without a matching partner may
be binding motifs for unknown transcription factors.
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When using only 400 bp upstream of Exon 1 like in the E2F
analysis, fewer elements were detected both for the muscle
and for the liver genes (see Table 1, columns B2 and C2). For
muscle, the highly signi®cant elements are SRF and MAZR,
and for liver HNF-1 and FOX (previously called HNF-3/
forkhead transcription factors).

If we look at the location of the known regulatory regions
relative to the TSS, we see that most of the regions are actually
enhancers that lie further upstream, or even downstream of the
TSS. We therefore retrieved, in a new analysis, 10 kb of
sequence upstream of the translation start (start of CDS
annotation) together with the same part of the mouse ortholog
when such a correspondence was available. The different steps
of the analysis for the liver genes are summarized in Figure 2.
For each pair of orthologous sequences we used AVID and
VISTA to detect regions having minimal 75% of similarity in
a sliding window of 100 bp. The regions located 5¢ upstream
of the TSS or in the 5¢ UTR were selected and scored with the
TRANSFAC collection of vertebrate matrices using the same
parameter settings as before. The results of the statistical
analysis performed thereafter are shown in Table 1, columns
A3 and B3. Both for the liver set and the muscle set, the
presence of the same elements as in the experimental regions
is more pronounced than for the proximal regions, for example
HEB, LBP and MEF-2 in the muscle regions and HNF-3,
HNF-4, C/EBP, COUP and AP1 in the liver regions. These are
probably factors that bind to sites in distal modules rather than
in the region just upstream of the TSS. There are also factors
that were present in neither of the two other analyses: for
muscle RSRFC4 (SRF-related), STAT6 (involved in hyper-
contractility of smooth muscle cells) and others without
established muscle relatedness (see Table 1); for liver TCF4
(tumors arising in the liver can be caused by a complex of
TCF4 and mutated beta-catenin), DBP (a member of the
C/EBP family that is enriched in liver) and others without
established liver relatedness (see Table 1). This shows that
putative regulatory motifs can be detected computationally
that have not been detected experimentally yet, which might

be due to the dif®culty of mimicking every developmental and
metabolic condition in the cell. The presence of factors
without a direct link with the experimental setup can
sometimes be due to the fact that they recognize sequences
which are related to the sites of other factors. This is probably
the case for v-MAF which binds to AP-1 sites since v-MAF
forms heterodimers with Fos and Jun (the consensus binding
site of v-MAF is TGCTGACTCAGCA and the consensus site
of AP-1 is GVTGACTCA so they are very similar).

Muscle and liver-speci®c genes without TRANSFAC

So far, we have only used a collection of PWMs of known
transcription factors. Because some of these matrices may be
of inferior quality, and also because there must exist other
transcription factors with yet unknown binding sites, we have
used the MotifSampler to detect over-represented DNA motifs
in the liver and muscle sets of human±mouse syntenic regions.
We have used the sampler ®ve times, each time with a
different length of the motif to be found (6, 7, 8, 10 and 12 bp).
The number of different motifs to be found was always set to
4, the prior to 0.2, and the number of runs to 10. This way, a
total of 4 3 10 = 40 motifs were found for each motif length.
These were ranked by their log likelihood score (4) and the top
®ve motifs were selected. All the top motifs were taken
together (5 3 5 = 25 in total), ranked again, and similar motifs
were grouped together (see Methods). This resulted in 18
distinct motifs for the liver set and 15 for the muscle set (see
Table 2). On these sets we performed two kinds of validation.
First, we calculated a signi®cance score similar to the one used
after the MotifScanner. We scored a set of putative regulatory
regions selected by aligning 3500 randomly selected ortho-
logous gene pairs of human and mouse with all the newly
found motifs and we calculated the respective expected
frequencies. These were used in Toucan to calculate p values
and sig scores (see the Methods section) in the sets of
coregulated genes. As can be seen in Table 2, many of the
motifs are signi®cantly over-represented compared to their
expected frequency (sig > 2). As a second validation we
compared each newly found motif matrix with the position
weight matrices of TRANSFAC professional version 6.1 (see
Table 2). Most of the motifs have a good similarity (see
Methods for the calculation of the similarity measure) with
one or more known matrices that were detected in the previous
analysis using the MotifScanner. By comparing the sequence
logo of the matrix found by the MotifSampler with the best
matching matrix of TRANSFAC (e.g., HNF-6 in Fig. 4), one
might detect gene set or process speci®c sequence preferences,
like the extra T in the new motif at the 5¢ end that is not present
in the TRANSFAC matrix. A few motifs seem to appear for
the ®rst time (they were not over-represented in the
MotifScanner approach), like HEN (or STAF) and HSF for
the muscle group and PPARA, SRY, MIF1, BRACH and NFY
(or AP4) for the liver group. Finally, there are several motifs
that do not match a known PWM. These could be binding sites
of unknown transcription factors.

CONCLUSION

In summary, Toucan provides an ef®cient and integrated
environment for gene regulation bioinformatics. Starting only
from gene identi®ers, it can retrieve, visualize, annotate and

Figure 4. Sequence logos (40) of a pair of similar motifs (see Table 2), one
motif derived from the scoring matrix M00639 (HNF-6, upper logo) of the
TRANSFAC database and one motif found by the MotifSampler (lower
logo). The ®rst is based on 13 binding sites in TRANSFAC, the second is
based on 16 motif instances in our liver regulatory dataset. Positions 2±6 of
the new motif match perfectly with the known motif. Position 1 of the new
motif is certainly a T while the known motif has no information at that
position.
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analyze proximal and distal regulatory sequences of coregu-
lated genes. Because we use web services, we can add more
services that work with fastA formatted sequence ®les and we
will be able to link with bioinformatics service registries in the
future. This ¯exibility will help to improve the interoperability
among visualization tools, algorithms and data providers for
gene regulation bioinformatics (12).
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