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Abstract. This work proposes the use of maximal variation analysis for
feature selection within least squares support vector machines for sur-
vival analysis. Instead of selecting a subset of variables with forward or
backward feature selection procedures, we modify the loss function in
such a way that the maximal variation for each covariate is minimized,
resulting in models which have sparse dependence on the features. Ex-
periments on artificial data illustrate the ability of the maximal variation
method to recover relevant variables from the given ones. A real life study
concentrates on a breast cancer dataset containing clinical variables. The
results indicate a better performance for the proposed method compared
to Cox regression with an L1 regularization scheme.
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1 Introduction

Survival analysis studies the time until a certain event is observed. A typical
problem within these studies is the presence of censored data, or data for which
the exact failure time is not observed exactly. The most common censoring
scheme is right censoring. In this case the event time is known to be later than
the last time for which information is available. A second type of censoring is left
censoring, occurring in cases where it is known that the failure occurred before
a certain time. Another type of censoring is interval censoring, a combination
of left and right censoring. This type is often seen in clinical studies in which
patients are scheduled for regular check-ups.

An important goal within the analysis of survival data is the construction
of prognostic indices. A prognostic index is a scoring function indicating the
risk of each patient (in medical studies) or component (in electrical studies).
The construction of a prognostic index is associated with a financial cost and
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effort depending on the number of covariates used within the index and the dif-
ficulty of obtaining that covariate. By selecting the most relevant variables, this
cost can be reduced. Due to this fact and the increasing availability of high di-
mensional data, as there are genomics and proteomics data [1], feature selection
becomes more and more an issue in current data analysis. Different feature selec-
tion procedures have been proposed [2,3,4,5], and can be categorized as filter or
wrapper methods [6]. Filter methods select variables independent to the predic-
tor, whereas wrapper methods are methods for which the selection procedure is
related to the predictor performance. Most feature selection methods are based
on forward selection or backward elimination processes. Forward selection starts
with the most relevant feature and adds the best feature in each step. The subset
of features is no longer extended once the addition of an extra feature does not
improve the performance. In backward selection the search is started with the
largest set of variables and the least promising one is eliminated in each step.
Disadvantages of these methods are the need to train the model for each subset
of selected variables and their large variability: small changes in the data can
result in the selection of different subsets of variables. An alternative approach
to reveal the most relevant feature is found in lasso [2], which shrinks some
coefficients and sets others to 0. To obtain zeros for certain coefficients the sum
of the absolute values of the coefficients is constrained to be less than a certain
constant.

In this paper we select variables as proposed in [7,8] and investigate it for a
model in survival analysis. Instead of constraining the sum of the coefficients,
the maximal variation of each component is minimized. The reason for this is
that non-relevant variables will result in very small maximal variations, whereas
the variation for relevant variables will remain large. The goal of this paper is to
combine the above feature selection procedure with least squares support vector
machines (ls-svm) [9,10] designed for survival analysis [11], resulting in a convex
quadratical optimization (QP) problem.

This work is organized as follows. In Section 2 we summarize the principle
of survival ls-svm. Afterwards this model is adapted towards feature selection.
Section 3 describes results obtained on artificial and clinical datasets. Section 4
concludes this work.

2 Additive Survival Least Squares LS-SVM

In previous work we presented a Least Squares Support Vector Machine (ls-
svm) as a flexible, non-linear, kernel based model for survival analysis [11], which
builds further on the work presented in [12,13]. The model is built from the idea
that in practice one is interested in the ranking of samples according to their
risk on experiencing the event. The final goal is to create a model for which
the predicted risk u(x) correlates with the observed failure times t. To measure
the concordance between the estimated risk and the observed failure time, the
concordance index (c-index) [14] is used:
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where nt is the number of test points, xi, ti and δi are the covariate vec-
tor, failure time and censoring indicator (1 for an observed event and zero for
right censored data) of sample i and I[z] = 1 if z > 0, and zero otherwise.
∆(xi, ti, δi;xj , tj , δj) indicates whether the observations i and j are comparable
and depends on the censoring mechanism present in the data. Without censor-
ing ∆(xi, ti, δi;xj , tj , δj) equals 1. For right censoring ∆(xi, ti, δi;xj , tj , δj) equals
zero if ti < tj & δi = 1 or tj < ti & δj = 1, and zero otherwise.

2.1 Pairwise Kernel Machine

A possible approach for maximizing the c-index with regard to u(x) is as follows
[11]:
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s.t. wT ϕ(xj) − wT ϕ(xi) = 1 + ξij , ∀ i, j = 1, . . . , n ,

(2)

where xi ∈ R
d represents the feature vector for the ith datapoint, w ∈ R

nϕ is
an unknown vector for the model u(x) = wT ϕ(x), with ϕ(·) : R

d → R
nϕ . n is

the number of datapoints, γ > 0 a regularization constant, ξij slack variables
allowing for incorrect rankings and ∆ij = ∆(xi, ti, δi;xj , tj , δj). Here it is as-
sumed that tj > ti for j > i and the 1 at the right hand side is used as a target
value. To visualize the effect of one covariate on the estimated risk, it can be
shown how risk changes when varying a single covariate while keeping the rest
constant. However, this only gives information on the effect of the covariate on
the ranking of the failure time and not on the failure time itself. To obtain the
latter information, an extra constraint is added and a componentwise kernel is
used [11]:
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where xi(p) represents the pth covariate of the ith datapoint, d is the number of
covariates, wp ∈ Rnϕp represents the unknown vector of the pth covariate in the
model and ϕp(x(p))(·) : R → R

nϕp represents the feature map corresponding to
the pth covariate x(p). γ > 0 and µ > 0 are two regularization constants and ξij

and χj are slack variables allowing for incorrect rankings and regression errors,
respectively.

In [11] we proposed to use the above method to estimate functional forms of
covariates in a univariate setting and to combine these terms linearly in order to
obtain an interpretable utility function (Figure 1(a)). However, certain covariates
used in this model, are possibly of little or no importance to the development of
an optimal utility function. The model is therefore adapted to incorporate the
selection of relevant variables, as illustrated in Figure 1(b).

Fig. 1. Illustration of the training phase. (a) In previous work we proposed to use
model P2 to estimate functional forms of covariates in a first layer and to combine these
estimated linearly in a second layer with model P1. (b) To select relevant features a
third layer is introduced, in which a new model (P3) is used for feature selection. The
training of the final prognostic index u(x) is then done only incorporating the selected
features.

2.2 Feature Selection

The approach proposed in [7] uses a componentwise model (as we do, see equa-
tion (3)) and additionally penalizes large variations for each component. This
results in variations which are very low for non-relevant variables and larger for
relevant variables. In the methodology followed in our previous work [11] we use
model P2 with a polynomial kernel K(x, z) = (ν + xT z)d, ν ≥ 0, in a compo-
nentwise way, to estimate the functional form for each covariate in a first step
(Figure 1). In a second step, model P1 with a linear kernel is used to create the
prognostic index as a linear combination of the estimated functional forms. This
work concentrates on the adaptation of this second layer, where we not only
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want to produce a prognostic index, but we want to do so with a small subset
of covariates. Therefore the sum of the maximal variations of all components is
added to the loss function. Additional constraints indicate the restriction on the
componentwise maximal variations. The model formulation then becomes:
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(4)
where mp is the variation of the pth covariate. The prognostic index for a data-

point with covariates x is defined as u(x) =
∑d

p=1 wT
p ϕp(x(p)), where ϕp(x(p)) =

x(p) for a linear kernel.

This problem is a quadratic programming problem and can therefore be
solved efficiently. In our application, model P3 is used in a linear setting, since
all non-linear effects are estimated in the first layer of the model. However, the
formulation can be solved in the dual form for applications with other kernels.

3 Results

This section summarizes results on artificial and clinical datasets. The artifi-
cial data shows a clear difference in maximal variation for relevant versus non-
relevant variables. Applying this approach to a dataset with clinical features
[15] on breast cancer results in a better prognostic index then when using L1

regularization with Cox’ proportional hazard model [16]. Model selection was
performed using 10-fold cross-validation. The model selection criterion was the
concordance of new samples relative to the training samples, as defined in equa-
tion (1). The tuning parameters γ(P1), γ(P2), γ(P3), µ(P2) and µ(P3) where
found using 10-fold cross-validation combined with a grid search, where CIu was
used as model selection criterion.

3.1 Artificial Data

In a first example we generated 100 datasets, each containing 100 training points,
100 test points and 20 variables of which only 4 contributed to the survival time.
All covariates were normally distributed and the survival time was Weibull dis-
tributed, depending on the covariates as

∑20
p=1 wpx(p) where wp was a randomly

chosen value for p = 1, . . . , 4 and 0 otherwise. Conditional independent censoring
is added as follows: the censoring time is distributed exponentially, dependent
on the first covariate. A point is considered to be censored in case the survival
time was higher than the censoring time.
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When only considering model P3, Figure 2(a) shows the frequency at which
variables were selected for each of the 100 models. Features for which the max-
imal variation was larger than one fifth of the largest maximal variation were
selected for each model. We clearly see that the relevant features are selected for
nearly every model. The non-relevant variables are only sporadically selected.
Results are further improved after 10-fold cross-validation (Figure 2(b)).
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Fig. 2. (a) Frequency of selection for each variable in an artificial example where
only the first 4 covariates contribute to the failure time (Weibull distributed). 100
models were trained with randomly chosen weights for the first 4 covariates. Variables
with a maximal variation larger than one fifth of the largest maximal variation were
selected. The relevant features are selected in most models, whereas the non-relevant
features are only sporadically selected. (b) Additional 10-fold cross-validation: features
selected in more than 8 folds were retained. On all 100 models, the relevant features
were significantly more often selected.

3.2 Breast Cancer Dataset

This example illustrates the selection of a subset of clinical variables on the
German Breast Cancer Study Group data [15]1, containing information on 686
patients and 8 variables. Available variables are: hormone treatment, age, meno-
pausal status, tumor size, tumor grade, the number of positive lymph nodes,
the progesterone receptor (fmol) and the estrogen receptor (fmol). Two third
of the data were used for training, the rest for testing the models. 299 (43.6%)
patients had a breast cancer related event within the study time, leaving all
other patients with a right censored failure time.

We compare the selected variables and the performances of our model (P1-P3-
P3) (Figure 1(b)) with an L1 regularization scheme with Cox regression (CoxL1)
and the Nottingham Prognostic Index (NPI), a linear prognostic model used in
clinical practice. Figure 3(a) illustrates how the variation of the parameter µ

influences the maximal variation for the different components. The vertical line
indicates the optimal value of this parameter. A clear difference in variation be-
tween the black and gray variables is noted at this point. According to our model

1 http://www.blackwellpublishers.com/rss/Volumes/A162p1.htm
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the number of positive lymph nodes and whether the patient received hormonal
treatment or not, are relevant features. When using CoxL1, the variables with
a non-zero coefficient are the number of positive lymph nodes, the progesterone
receptor and the grade of the tumor. The NPI on the other hand considers the
tumor size, grade and the number of positive lymph nodes as relevant variables.
All kernel-based models used a polynomial kernel to fit non-linearities. Figure
3(b) compares performance of different models: Cox (Cox) and a two layer model
(P2-P1) (Figure 1(a)) (surlssvm) using all covariates, CoxL1 and our presented
model (P2-P3-P1) (surlssvm maximal variation). The models with all variables
performs best. The lssvm-based model with a subset of variables performs better
than CoxL1.
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Fig. 3. Feature selection with surlssvm. (a) Influence of µ on the maximal variation
for each component, for optimal γ. At the optimal value of µ (vertical line) hormonal
treatment and the number of positive lymph nodes are selected as relevant variables.
(b) Comparison of performances of Cox and surlssvm(P2-P1), CoxL1 and model
surlssvm maximal variation (P2-P3-P3). The models with all variables performs best.
The lssvm-based model with a subset of variables performs better than CoxL1.

4 Conclusions

In this work we presented a method to select relevant features in survival anal-
ysis within an ls-svm based model. Results on an artificial dataset show the
selection of relevant variables and the rejection of non-relevant variables. In the
clinical dataset used in this paper, the proposed method performs better than
Cox regression with L1 norm and the the NPI, which is used in clinical practice.
Both the NPI and Cox-L1 use three different variables, whereas our method
selected only two variables. Although further research is necessary, these prelim-
inary results are promising.
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