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Abstract The development of structure-learning algorithms for
gene regulatory networks depends heavily on the availability of
synthetic data sets that contain both the original network and
associated expression data. This article reports the application of
SynTReN, an existing network generator that samples topologies
from existing biological networks and uses Michaelis-Menten and
Hill enzyme kinetics to simulate gene interactions. We illustrate the
effects of different aspects of the expression data on the quality of
the inferred network. The tested expression data parameters are
network size, network topology, type and degree of noise, quantity
of expression data, and interaction types between genes. This is done
by applying three well-known inference algorithms to SynTReN
data sets. The results show the power of synthetic data in revealing
operational characteristics of inference algorithms that are unlikely
to be discovered by means of biological microarray data only.
1 Introduction
The development of algorithms to infer the structure of gene regulatory networks based on
expression data is an important subject in systems biology research and machine learning. Validation
of these algorithms requires benchmark data sets for which the underlying network is known. Since
experimental data sets of the appropriate size and design are usually not available, there is a need to
generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in
a fast and reproducible manner. As a first step towards simulating the complete cellular behavior,
computer models of gene interaction networks can be created. In such models it is possible to take
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the topology of a gene interaction network as a starting point, and use computer simulation of the
gene interactions and transcription to extract the corresponding expression data under various ex-
perimental settings.

In this article the application of SynTReN [18] will be illustrated. SynTReN is an existing generator
of transcription regulatory network models and of the associated expression data. Instead of using
random graph models, SynTReN uses topologies that are generated based on previously described
source networks, allowing better approximation of the statistical properties of biological networks.
We make use of the different parameters of SynTReN to illustrate the power of synthetic data sets in
exploring the application scope of a number of published inference algorithms. In this way this
article aims at illustrating both the added value of biologically plausible synthetic expression data in
general and the flexibility of SynTReN in particular. This also sheds light on the question to what
extent the knowledge of the statistical properties of real interaction networks influences the con-
fidence in inference algorithms for transcriptional networks. The reported experiments support the
need for accurate and high-performance computer models of living systems in order to leverage
systems biology research.
2 Experimental Approach

The main goal of the presented analyses is to demonstrate how the use of synthetic data can pro-
vide substantial insight into the performance of a network inference algorithm and its relationship
to properties of the input data. The experimental setup that will be used is shown in Figure 1: In
a first step, a synthetic gene interaction network is generated based on a chosen network topology
and interaction type. Next, expression data is generated that corresponds to the gene interactions
dictated by the network. This involves setting various levels of noise and structuring the resulting
data set in experiments and samples per experiment. An experiment in this context involves the
selection of a set of external conditions, which are subsequently perturbed and fed into the
transcriptional gene network. For each experiment, SynTReN produces a number of microarray data
sets, referred to as samples. The resulting data set is then used as input to a number of different
network inference algorithms, which produce a candidate network of genes or gene modules. In a
final step, the original network topology and the inferred candidate are compared through a derived
adjacency matrix. The calculated performance metrics are summarized by means of plots and
discussed in Section 6.

The resulting performance metrics are used only as a relative score to differentiate across dif-
ferent experimental settings. For several reasons, they were not intended to quantitatively assess the
performance of the inference algorithms or to compare algorithms with each other. First of all, only
default settings were used when running the inference algorithms. These settings are most likely not
the optimal ones for every experiment. Second, the metrics only assess the presence and absence of
edges in the inferred network. A more sophisticated or in-depth evaluation of the inferred networks
could give more insight into the performance of an algorithm for a specific experiment, but it less
suitable for the high throughput of this study.

With the setup described above, we aimed at investigating the following questions related to
several parameters of the expression data that will be supplied to the inference algorithms:
� Network size: How trustworthy are inference results of ever larger interaction networks,
given abundant expression data? This is important in that it relates to the applicability
of inference methods for large networks, and links to the discussion of the need of
heterogeneous data sources to infer truly large networks.

� Graph topology: To what extent does the quality of inferred networks depend on the statistical
nature of the topology of interaction networks? Several previous studies [10, 11] have
reported the use of synthetic expression data from random graph models to validate
Artificial Life Volume 14, Number 12



Figure 1.Overview of the experimental setup used. A synthetic interaction network is generated, and expression data is derived,
which is used as input to several inference algorithms. The inferred networks are then compared with the original by means of
calculations on corresponding adjacency matrices. Parameters to be defined are shown in the margins of the diagram.
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network inference. However, previous work has shown that these random graph models
do not resemble real biological networks in every respect [18]. This raises the question
of the performance of algorithms that have been designed with only random network
topologies as a benchmark. To what extent does good performance on a specific class of
networks generalize to other classes? Can increasing knowledge of topological properties of
interaction networks substantially increase the ability to design better inference algorithms?

� Noise type and amount: What is the effect of various types and amounts of noise in expression
data on the quality of inference results? The experiments give an indication of the added
value of a reduction of noise in high-throughput experiments. Other experiments try to
answer the relation between the estimate of biological noise in data sets and the confidence
expressed in inference results.

� Amount of expression data: What is the marginal gain in inference quality by spending
resources on obtaining extra data sets of microarray experiments? Do inference algorithms
Artificial Life Volume 14, Number 1 3
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reach a maximum inference quality, after which supplying more expression data becomes
pointless? The reported experiments investigate this issue in relation to the amount of noise
present in the expression data provided.

� Interaction type: What is the effect of different interaction types between genes? More
specifically: To what extent do highly nonlinear interactions act as a buffer to mask the
activity of downstream genes in an interaction cascade? Should such a buffering effect
occur, it can be expected that inference results downstream of such genes are of lower
quality, which can be taken into account when validating results on real-world data.
3 Generating Synthetic Regulatory Networks

For the generation of synthetic gene expression data, the software package SynTReN [18] was used.
SynTReN produces synthetic transcriptional regulatory networks (TRNs) and corresponding simu-
lated microarray data sets. The SynTReN generator can be parameterized by the topology and size of
the synthetic network, the gene interaction types and their parameters, the number of simulated
experiments, and the levels of biological, experimental, and input noise.

Network topologies are generated either by selecting subnetworks from a previously described
biological network (e.g., the E. coli network [16]) or by generating a topology using a random graph
model. Two different strategies to select a connected subgraph from a source graph are implemented
in SynTReN: neighbor addition and cluster addition [18]. Different random graph models can also be
generated using SynTReN. In this article, four different random graph models were used: Erdös-
Rényi (ER) [6], Watts-Strogatz (WS) [19], Albert-Barabási (AB) [1, 2], and Bollobás (DSF) [4, 5]. For
a brief description of these models, we refer to the supplementary information available on the Web.

After generating the topology, transition functions representing the regulatory interactions between
the different genes are assigned to the edges in the network. Nonlinear functions (based on Michaelis-
Menten and Hill kinetics) model gene regulation in steady-state conditions [7, 9, 11].

Each interaction can be either activating or inhibiting; some examples of activating transition func-
tions are given in Figure 2. By choosing appropriate parameter values, different types of transition
Figure 2. Examples of one-input activating transition functions for different combinations of the kinetic parameter.
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functions can be obtained, such as linear (function 6 in Figure 2), linearlike (functions 3 and 4), steep
(functions 1 and 8), or sigmoidal (function 7).

A gene expression data set is obtained from this interaction network by simulating the synthetic
network under different simulated experimental conditions and subsequently sampling data from it.
Each sampled data set represents a simulated microarray data set.

During sampling, three types of noise are introduced:

1. Biological noise: Biological noise is defined as the noise that propagates through the gene
network, corresponding to stochastic variations in gene expression that are unrelated to
the applied experimental procedures.

2. Experimental noise: Microarrays are also subject to experimental noise. Contrary to biological
noise, this noise does not propagate through the gene network, but represents errors in
measuring the correct mRNA concentration.

3. Input noise: Input noise is only relevant when measuring multiple microarrays under the same
external conditions. This type of noise represents the variation in gene expression level of
the input genes under the same external conditions.

4 Inference Algorithms

Three different network inference algorithms were used. A short description of each is given below.
For further details of each tool we refer to the relevant publications.

Genomica [13] uses expression data to construct a network of interacting modules, each consisting
of co-regulated genes, their regulators, and the conditions under which regulation takes place (i.e., the
regulatory program). The method is based on probabilistic relational models [14], a relational
extension to Bayesian networks.

SAMBA [17] is a bi-clustering algorithm that groups genes by means of a clustering of similar
expression patterns in the input data over a subset of input conditions. The algorithm is based on a
graph theoretic approach and statistical modeling of the data. The subsets of genes that jointly
respond to specific conditions can be interpreted to form a module network.

Aracne [3, 10] explicitly infers a gene interaction network from microarray expression profiles on
the basis of mutual information [12] between the genes. Two parameters control the pruning of candi-
date interactions. The mutual information (MI) threshold eliminates edges that have low mutual infor-
mation and thus removes edges between genes that have a nonzero MI solely due to random
sampling of the data samples. The data processing inequality (DPI) is used to eliminate the least strong
interaction of a triplet of interactions and thus for example eliminates transitive interactions between
two genes if the interaction is indirect through a third gene.

All inference algorithms were run at their default parameter settings. The only exception to this
rule was Aracne, which requires the specification of the DPI threshold parameter. The authors
suggest a DPI threshold level between 0 and 0.15. In our experimental setup, a DPI level of 0.10 was
used as a typical threshold, and a DPI level of 0 (indirect interactions were always pruned) was used
for comparison.
5 Evaluating Performance of Inference

In this section we discuss the score metrics that were used to indicate the quality of the inferred
gene interaction networks. The optimal solution to the inference problem is a reconstruction of
the complete interaction network with its topology and causal relations between genes. In reality
exact reconstruction of the causal relations in the network is impossible, since generators like
SynTReN produce steady state data. To infer causality additional information is required, such as
Artificial Life Volume 14, Number 1 5
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time-course gene expression data, perturbation experiments with gene knockouts, or other types of
data such as location data and motif data. As a consequence, the input network topology has to
be transformed to an undirected network to allow comparison with the reconstructed networks.
Additionally, both Genomica and SAMBA generate module networks, which are a partitioning of
the genes in subsets that belong together. This modular output has to be translated into a corre-
sponding gene regulatory network to allow comparison with the original interaction network, which
does not explicitly contain the concept of modules. To this end both the known network topology
and all of the reconstructed networks are converted into a gene-by-gene binary adjacency matrix
for further analysis.

For the original SynTReN network, this matrix is constructed by calculating the shortest undi-
rected path length between every pair of genes in the original network, and comparing this distance
with a threshold. If the distance is less than or equal to the threshold, the corresponding two entries
(due to symmetry) in the adjacency matrix are set to 1. If a threshold of 1 is used this procedure
results in a matrix representing an undirected version of the original network. However, because of
the way the adjacency matrix is constructed for the module networks, it is necessary to use a higher
threshold to allow meaningful comparison. By default a threshold of 2 was used, in effect grouping
genes that are linked by at most one intermediary gene into a ‘‘module.’’

For the module networks, the adjacency matrix is constructed as follows: starting from the gene-
by-gene identity matrix M, the entries Mij and Mji are assigned a value of 1 if at least one module is
present that contains both genes i and j. A regulatory module therefore corresponds to a clique in the
graph, with a connection between every pair of genes in the module. In this way, the modules will
probably contain many indirect interactions. If genes a and b share a common regulator c and all
three genes are members of the module X, the adjacency matrix will contain nonzero entries for the
indirect interaction between a and b.

Aracne’s output can be transformed into an adjacency matrix in a straightforward way because it
already contains a single p value for each selected pair of genes that share a regulatory interaction in
the inferred network. Genes that are not connected according to Aracne do not appear in its output.
Therefore, the selected gene pairs correspond exactly to the 1’s in the adjacency matrix, while all
other entries are 0, except for those on the diagonal (following [15]). Aracne directly infers an in-
teraction network, rather than a module network, and is capable of efficiently pruning indirect
interactions based on the MI between each pair of genes. However, the procedure to construct the
adjacency matrix from the original network actually rewards the algorithm for finding indirect inter-
actions when using a path length threshold of 2. By lowering it to a value of 1 it is possible to
effectively require Aracne to infer the exact—but undirected—original network topology and to
evaluate its ability to effectively prune indirect interactions.

Comparison between the resulting adjacency matrices was performed by counting the corre-
sponding and conflicting entries in both matrices and calculating the sensitivity (also known as recall ),
specificity, and precision (also known as positive predictive value). As a summary metric, the F measure was
used, which is the harmonic mean of precision and recall. Additional details about the scoring
procedure and characteristics of the performance metrics can be found in the Web Supplement to
this article.
6 Results

6.1 The Effect of Network Size
To assess the influence of network size on inference performance, subnetworks of different sizes
were selected from the E. coli source network [16], according to the cluster selection method [18]. The
size of the selected subnetworks varied from 50 to 300 edges in intervals of size 10, and linear
interaction functions were assigned to all edges in the network. All top nodes acted as external input
genes. A large expression data set with a low noise level (1000 experimental conditions, one sample
each, experimental noise 0.05) was generated for each of the networks.
Artificial Life Volume 14, Number 16
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For each algorithm the F measure was plotted as a function of increasing network size. All three
algorithms show clearly different quantitative behavior when faced with increasingly large networks.

As illustrated in Figure 3a, SAMBA’s overall performance, as indicated by the F-measure, stays the
same regardless of size, although there is clearly a larger variation for smaller networks. Its precision,
however, decreases with increasing network size (see Figure 3b).

As illustrated in Figure 3c, Genomica produces lower F-measure scores as the networks to infer
grow, but they level off eventually. Genomica did not output results for many of the larger networks
at the settings that were used, even after long running times. In cases where the running time
exceeded 12 h, the experiments were stopped, and these data points are missing from the analysis.
Aracne’s performance also decreases for larger networks, but does not seem to level off within the
range that was tested (Figure 3d).

In summary, inference performance drops as network size increases, even if enormous amounts
of data are available. This decay, however, is not as drastic as what might be expected, especially for
Aracne, which shows no sign of substantially reaching the end of its application scope for larger
networks. In order to infer larger networks with high confidence, it seems that microarray data alone
is insufficient and that complementary approaches such as adding further data sources or incor-
porating domain knowledge are needed.
Figure 3. Effect of network size on the performance (F measure and precision) of Aracne, Genomica, and SAMBA.
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6.2 The Effect of Network Topology
In the following series of experiments smaller networks of approximately 50 genes were used. The
effect of graph topology on the performance of the inference algorithms was studied by creating
gene networks with a topology derived from different random graph models that are known to
approximate biological networks. The models that were studied are the Erdös-Rényi [6] (ER)
random graph model, the Albert-Barabási [1] (AB) scale-free network model, the Watts-Strogatz [19]
(WS) small-world model, and the directed scale free (DSF) model, as described by Bollobás [5].
Apart from these random models, a set of topologies was also generated by selecting subnetworks
from the previously described E. coli [16] and S. cerevisiae [8] transcriptional network, as described in
[18]. These latter graphs more closely approximate the topological properties of known transcrip-
tional networks [18].

For each random graph model a small number (approximately 10) of representative graph topolo-
gies was created by sweeping the model parameters across a range of values. The parameter values
were varied around a default set of values that was chosen to produce graphs whose properties are
close to the E. coli network (this was investigated in a previous study [18]). For every generated graph
topology, a series of 10 experimental runs was performed. In each run several distinct synthetic gene
networks with the same network topology were created by assigning linear interaction functions to the
edges in the graph (see also Section 3), and synthetic gene expression data was generated for each of
the resulting gene networks. Each data set consisted of 100 simulated experimental conditions, with
biological noise set at 0.05, and no experimental or input noise. For every inference algorithm about
5600 expression data sets were supplied for inference, covering 92 different network topologies.

Figure 4(a) indicates that SAMBA’s performance does not differ markedly between any of the
graph classes with regard to sensitivity or specificity. The sensitivity is low across graph classes,
because few true positive interactions are found.

Both Genomica (Figure 4b) and Aracne (Figure 4c) achieve very similar sensitivity and specificity
values for AB and for WS graphs, causing these graph models to be largely co-located on both the plots
(upper left). Other random graphs, like the ER and DSF graphs, cover a much wider range of
sensitivity-specificity combinations. The S. cerevisiae andE. coli subnetworks also show significant overlap
with each other but clearly cover a different sensitivity-specificity region than the AB and WS graphs.

For both Genomica and Aracne it is interesting to note that some of the E. coli and S. cerevisiae
subnetworks show a specificity of zero at high sensitivity. This is due to the fact that the particular
network topologies involved—which were in all cases subnetworks selected with the cluster addition
method—are in fact one big starlike structure, with a single regulator regulating a large number of
genes. Since all gene pairs are separated by at most two edges, the adjacency matrix for a path length
threshold of 2 is an all-one matrix. As a consequence, the number of true negative interactions will
always be zero and thus result in a specificity value of zero.

Summarized, the topology of the network can have a strong influence on the performance of an
inference algorithm. This should be taken into account when evaluating inference algorithms using
synthetic data sets. It is encouraging to note that for two of the algorithms tested here, namely
Genomica and Aracne, the inference results on topologies that are known to be biologically more
plausible are better.
6.3 The Effect of Various Noise Types
The effect of noise was investigated by generating expression data from the same network under a
variety of noise conditions. The network topology that was used to generate data was a subnetwork
selected from E. coli [16] with 50 genes and 76 edges in which 5 genes acted as external inputs. In
each of the 20 experimental runs, linear interaction functions were assigned to the edges in the
network, and expression data was sampled for a range of noise levels. The tested range varied from
0.0 to 1.0 in intervals of 0.05 for each of the noise types (biological noise, experimental noise, and
input noise). The nominal data set consisted of 100 experimental conditions, represented by 200
array data sets (2 samples per condition).
Artificial Life Volume 14, Number 18



Figure 4. Effect of network topology on sensitivity and specificity for Aracne, Genomica, and SAMBA.
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In the following paragraphs, because of the large number of tested parameter combinations, not
all of the results are accompanied by figures. Additional figures are available in the Web supplement.
Also note that for a linear interaction sampled at noise level 1.0, the correlation between the regulator
and the regulated gene is still quite high (approximately 0.7) if the expression data sufficiently spans
the range of possible regulator values. This means that at a noise level of 1.0, the data still contains
much more information than genuinely random data.

Since the effect of input noise only manifests itself as a difference between multiple samples
measured under the same external conditions, its effect is very small under the given experimental
conditions for each of the three algorithms. Creating data sets with a smaller number of experimental
conditions and a larger number of samples could possibly provide more insight, but this analysis was
not performed to limit the computational costs.

In the results for SAMBA, the F measure decreases linearly with increasing levels of biological noise.
A similar decrease in F measure is observed with increasing experimental noise. Detailed analysis shows
a gradual increase in precision to 1—the level at which all inferred interactions are correct—reflecting
the fact that SAMBA outputs module networks with very small or even empty modules at high noise
levels. In that case the only nonzero entries left in the adjacency matrix are those on the diagonal, which
results in a high precision. The sensitivity, however, drops to zero at high noise, globally resulting in
decreasing F measure. The effect of input noise on the performance is much less pronounced.
Artificial Life Volume 14, Number 1 9
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In Genomica’s case, the F measure shows a very small decrease across the tested range of bio-
logical noise and experimental noise levels. The precision (Figure 5a) decreases linearly with increas-
ing biological or experimental noise, while the sensitivity remains almost constant (Figure 5b). The
highest F-measure values are not achieved with zero noise, but with a small amount of noise. A
possible explanation for this observation is the fact that Genomica uses a correlation-based cluster-
ing as an initial step to infer the module network. In zero noise conditions such a correlation-based
approach has the tendency to overconnect the network, because indirectly interacting genes will
show as strong a correlation as those that are directly interacting. Similar behavior was observed
when testing other correlation-based methods, the data from which is not included in this study.

For Aracne, the effect of noise on the quality of the inferred output network depends strongly
on the scoring procedure. When using the default path length threshold of 2 (see Section 5), the
F measure shows a reverse-S-shaped decrease with increasing biological noise (Figure 6a). This de-
crease is much more linear for experimental noise (Figure 6c). Again, input noise has a less pro-
nounced effect (value around 0.7), although the F-measure scores show a very small decrease at high
noise levels.

On the other hand, as explained in Section 5, it is possible to require Aracne to precisely infer the
original network and evaluate its ability to remove indirect interactions. In this setup, the algorithm’s
DPI threshold was set to 0.00 for most strict pruning of indirect interactions. In this case the
F measure (Figure 6b) shows a very different behavior. The performance metrics, which are at a low
level when little or no biological noise is present, show a steep increase with rising levels of noise to a
plateau, from which they then decline very slowly. A possible explanation for this behavior is that
when almost no noise is present, the mutual information (MI) between indirectly connected genes is
almost equal to that of the direct interactions, while the propagating biological noise will tend to
decrease the MI between indirectly connected genes relative to those that are directly connected,
resulting in more efficient pruning. In this setting the effects of both experimental and input noise
are also quite different: The F measure remains unchanged and at a low level (see Figure 6d), with
an increase in precision offset by a decrease in sensitivity. Possibly, Aracne cannot prune the indi-
rect interactions efficiently in this case, because these types of noise do not propagate through the
network, and they tend to decrease both the MI of the direct and that of the indirect interactions in
equal amounts.

In conclusion, Aracne is quite robust in the face of increasing biological noise. When no biological
noise is present, the performance is high if the algorithm is not penalized for indirect interactions
Figure 5. Effect of different noise types on performance measures for Genomica.
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Figure 6. Effects of different noise types on performance measures for Aracne, Genomica, and SAMBA.
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(Figure 6a). With much biological noise, the performance remains high—and in a way becomes
even better—because indirect interactions are effectively removed. For experimental noise, on the
other hand, performance degrades gradually under the first scoring regime (Figure 6c). However,
this is not due to the removal of indirect interactions as it is for biological noise, since the
performance is low across the entire noise range for the second scoring regime (Figure 6d).

In summary, a clear effect of biological noise and experimental noise on the inference perfor-
mance of all algorithms is observed, with input noise having the smallest influence. This illustrates
that noise is an important, and sometimes required, factor for network inference. All three noise
types available in the SynTReN generator provoked qualitatively different inference behavior, which
supports their adoption in generators for synthetic data in general.

6.4 The Effect of Available Expression Data
This series of experiments aims at showing the effect of the amount of available expression data on
inference results. The E. coli subnetwork with cluster addition of size 50 genes was chosen as the
Artificial Life Volume 14, Number 1 11
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source network topology, and 20 experimental runs were done by assigning linear interaction
functions to the edges and subsequently sampling data from the network. Data sets varied in size
from 5 simulated experimental conditions to 200, with a step size of 5. To evaluate the dependence
of the number of arrays that are needed to infer the network on the amount of noise in the data set,
the simulated expression data contains experimental noise levels ranging from 0 to 1 with step size
0.2. All other parameters were kept constant during the experiments.

Figure 7 shows the F measure for SAMBA, the F measure and precision for Genomica, and the
F measure for Aracne. Error bars were calculated but are omitted on the plots to improve readability.
Their relative size was comparable to those of the preceding figures such as Figure 6. The behavior
of the tested algorithms when presented with increasing data and noise differs substantially, so we
start by splitting up the discussion per algorithm.

SAMBA’s F-measure scores increase gradually when the algorithm is provided with increasing
amounts of expression data (Figure 7a). No performance plateau was reached within 200 experi-
ments, and this behavior is consistent across noise levels. More detailed analysis (plots not shown)
shows that the precision gets lower with an increasing amount of data, but is offset by an increase in
Figure 7. Effect of amount of available expression data on performance measures for Aracne, Genomica, and SAMBA.
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sensitivity, leading to the increasing F measure in Figure 7a. This implies that more interactions are
recovered, of which an ever increasing ratio are false (precision drops), but this is compensated by an
increasing ratio of correctly inferred interactions (sensitivity increases) leading to the overall increas-
ing F measure. The higher the noise level, the consistently lower the inference quality.

For Genomica (Figure 7b) a similar increase in F measure is observed for increasing input data, but a
plateau is reached, after which further addition of expression data does not result in significant changes
in performance. With increases in experimental noise this behavior is generally similar, although the
maximum score is slightly lower. An interesting effect is seen when examining the score for zero noise:
As shown in Figure 7b, the highest F-measure values are reached for a noise level of 0.2, not in the ab-
sence of noise as might be expected. This is due to a significantly lower sensitivity at a noise level of 0
than at small positive noise (plot not shown). Precision values on the other hand are ranked according to
noise level as expected, with the highest values for zero noise, as shown in Figure 7d.

The results for Aracne in Figure 7c show that it performs quite well even with small data sets,
reaching maximum (plateau) performance quickly. When noise is introduced, the behavior changes
qualitatively, with larger amounts of data required to achieve good results. No plateau is reached in
this case.

In conclusion, there is a substantial but decreasing benefit of supplying more expression data sets
when trying to infer interaction networks. The algorithms tested behave differently, sometimes
reaching maximum performance in noiseless data sets (Aracne), sometimes benefiting from noise
(Genomica). The absolute scores achieved also differ markedly. Except for the special case where
Aracne infers a network from noiseless data, reaching the inference plateau takes enormous amounts
of data, though the target network aimed for consists of only 50 genes.

6.5 The Effect of Different Interaction Types
An additional experiment was performed to assess the effect of different interaction types between
genes. More specifically, we were interested in examining to what extent a highly nonlinear interaction
can act as a buffer to mask the activity of downstream genes in an interaction cascade. Should such a
buffering effect occur, we can expect inference results downstream of such genes to be inferior,
which could be taken into account when validating results on real-world data. A detailed description
of the experimental setup and results, along with figures, can be found in the web supplement.

The experiment shows that highly nonlinear interactions do act as a buffer, masking the activity of
downstream genes. In the case of a single nonlinear interaction this effect is dependent on the type of
algorithm and the output that it generates. When multiple nonlinear interactions are present, it be-
comes increasingly difficult to detect the relationship between all the genes in an interaction cascade,
irrespective of the inference algorithm.
7 Conclusion

In this article we have used synthetic data to gain insight into the different aspects of the expression
data on the quality of the inferred network. Three different types of inference algorithms were tested,
each of which exhibited different responses to varying parameters of the synthetic data. The param-
eters tested were network size, network topology, type and degree of noise, availability of expression
data, and interaction types between genes.

No attempt was made to explicitly fine-tune the parameters of the inference algorithms, since
the main goal of this work was to study the effect of different properties of the data on the inference
procedure in a qualitative sense, and not a quantitative performance comparison of the algorithms
themselves.

Experiments show that inference performance drops as network size increases, even if enormous
amounts of data are available. This decay, however, is not as drastic as what might be expected. In
order to infer larger networks with high confidence it seems that complementary approaches such as
adding further data sources or incorporating domain knowledge are needed.
Artificial Life Volume 14, Number 1 13
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The topology of the network can have a strong influence on the performance of an inference
algorithm. This should be taken into account when evaluating inference algorithms using synthetic
data sets. It is encouraging that for two of the algorithms tested in this study, Genomica and Aracne,
the inference results on topologies that are known to be biologically more plausible are better.

Different types of noise clearly have distinct effects on the inference performance of each
algorithm. Experiments show that noise is an important, and sometimes required, factor during
inference. All three noise types available in the SynTReN generator provoked qualitatively different
inference behavior, which supports their adoption in generators for synthetic data in general.

We observed a substantial but decreasing benefit of providing more expression data when trying
to infer interaction networks. The tested algorithms behave differently, sometimes reaching a maxi-
mum performance where adding more arrays becomes pointless. Reaching the inference quality
plateau requires enormous amounts of data relative to the size of the inferred network.

The results show the added value of synthetic data in revealing operational characteristics of in-
ference algorithms unlikely to be discovered by means of biological microarray data, and make a
strong case for computer models of biological systems in leveraging systems biology research.
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