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Abstract. Recent advances in dual averaging schemes for primal-dual
subgradient methods and stochastic learning revealed an ongoing and
growing interest in making stochastic and online approaches consistent
and tailored towards sparsity inducing norms. In this paper we focus on
the reweighting scheme in the l2-Regularized Dual Averaging approach
which favors properties of a strongly convex optimization objective while
approximating in a limit the lo-type of penalty. In our analysis we focus
on a regret and convergence criteria of such an approximation. We derive
our results in terms of a sequence of strongly convex optimization ob-
jectives obtained via the smoothing of a sub-differential and non-smooth
loss function, e.g. hinge loss. We report an empirical evaluation of the
convergence in terms of the cumulative training error and the stability
of the selected set of features. Experimental evaluation shows some im-
provements over the {1-RDA method in the generalization error as well.
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1 Introduction

In this paper we investigate an interplay between lo-Regularized Dual Averaging
(RDA) approach [18] in the context of stochastic learning and parsimony con-
cepts arising from the application of sparsity inducing norms, like the ly-type of
penalty. Learning with ||z|lo pseudonorm regularization is a NP-hard problem
[10] and is feasible only via the reweighting schemes [3], [B], [I6] while lacking a
proper theoretical analysis of convergence in the online and stochastic learning
cases. Some methods, like [7], consider an embedded approach where one has
to solve a sequence of QP-problems, which might be very computationally- and
memory-wise expensive while still missing some proper convergence criteria.

There are many important contributions of the parsimony concept to the
machine learning field, e.g. understanding the obtained solution or simplified and
easy to extract decision rules. Many methods, such as Lasso and Elastic Net,
were studied in the context of stochastic and online learning in several papers
[15], [18], [4] but we are not aware of any lp-norm sparsity inducing approaches
which were applied in the context of Regularized Dual Averaging and stochastic
optimization.



In many existing iterative reweighting schemes [5], [9] the analysis is pro-
vided in terms of the Restricted Isometry (RIP) or the Null Space Properties
(NSP) [8]. In this paper we are trying to provide a supplementary analysis and
sufficient convergence criteria for learning much sparser linear Pegasos-like [14],
[13] models from random observations. We use the la-Regularized Dual Aver-
aging approach and a sequence of strongly convex reweighted optimization ob-
jectives to accomplish this goal. The solution of every optimization problem
at iteration ¢ in our approach is treated as a hypothesis of a learner which
is induced by an expectation of a non-smooth loss function (e.g. hinge loss)
f(w) & E¢ll(w, €)], where the expectation is taken w.r.t. the random sequence
of observations £ = {{;}1<r<t. We regularize it by a re-weighted lo-norm at
each iteration t. This approach in case of satisfying the sufficient conditions will
converge to a global optimal solution w.r.t. our objective and the loss function
which is generating a sequence of stochastic sub-gradients endowing our dual
space E* [12].

This paper is structured as follows. Section [2] describes our reweighted [o-
RDA method. Section gives an upper bound on a regret for the sequence of
strongly convex optimization objectives under the setting of stochastic learning.
Section [3] presents our numerical results and Section Ml concludes the paper.

2 Proposed Method

2.1 Problem definition

In the Regularized Dual Averaging approach for stochastic learning developed
by Xiao [I8] we approximate the expected loss function f(w) £ E¢[l(w,€)] on
a particular random question-answer sequence {&;}1<r<¢, where & = (27, y,)
and y, € {—1,1}. In this particular setting the loss function is regularized by a
general convex penalty and hence we are minimizing the following optimization
objective:

min 6(w)

|

st p(w) & =D fw, &) + ¥(w), (1)

where ¥(w) can be either a strongly convex || -||2 norm or a non-smooth sparsity
promoting || - ||; norm.

In our particular setting we are dealing with the squared lo norm and ¥ (w) £
A||wl||3. For promoting additional sparsity we add to the l-norm the reweighted
||@tl/2w|\% term such that we have ¥, (w) = \|lwl|3+ H@tl/QwH%. At every iteration
t we will be solving a separate A-strongly convex instantaneous optimization
objective conditioned on a diagonal reweighting matrix ©;.

To solve problem in Eq.(]) we split it into a sequence of separated optimiza-
tion problems which should be cheap to compute and hence should have a closed
form solution. These problems are interconnected through the sequence of dual



variables g, € 0f(w,&;), 7 € 1,t which are averaged w.r.t. to the current iter-
ate t. Because we are working with the non-smooth hinge loss the reweighted
lo-regularization is imposed via a composite smoothing term which is being grad-
ually increased with every iteration t.

According to a simple dual averaging scheme [12], [18] we can solve Eq. ()
with the following sequence of iterates wy1:

t

wer = argmin{y_(Gr, w) + ¥ (w) + Bh(w)}, (2)

T=1

where h(w) is an auxiliary strongly convex smoothing term and {3;}+>1 is a non-
negative and either constant or increasing input sequence, which in case of non-
strongly convex W;(w) function entirely determines the convergence properties
of the algorithm. In our reweighted lo-RDA approach we use a zero [3i-sequenc
such that we omit the auxiliary smoothing term h(w) which is not necessary
since our W;(w) function is already smooth and A-strongly convex. Hence the
solution for every iterate w41 in our approach is given by

. ~ 2
wisr = argmin{ (g, w) + 118, w]3 + Awl3}, (3)

where for derivations we do average stochastic sub-gradients as §; = % Ztr=1 Gr-
We will explain the details regarding recalculation of @, in the next subsection.

2.2 Algorithm

In this subsection we will outline our main algorithmic scheme. It consists of
a simple initialization step, computation and averaging of the subgradient g,
evaluation of the iterate w1 and finally recalculation of the reweighting matrix
O¢11. In Algorithm [Tl we do not have any explicit sparsification mechanism for
the iterate wyy1 except for the auxiliary function ”Sparsify” which utilizes an
additional hyperparameter £ to truncate the final solution w; or any other w
below the desired number precision as follows:

. if |
(i) — 0, _ if |'(U | S g,
we { w(® | otherwise, (4)

where w® is i-th component of the vector w. In general we do not restrict our-
selves to a particular choice of the loss function f(wy, &) but as it was mentioned
before we stick to the hinge loss for the completeness. In comparison with the
simple lo-RDA approach [I8] we have one additional hyperparameter €, which
enters the closed form solution for w;y; and should be tuned or adjusted w.r.t.
the iterate ¢ as described in [3] and highlighted in [2].

In Algorithm [Tl we perform an optimization w.r.t. to the intrinsic bias term
b, which doesn’t enter our decision function

4 = sign(w?

x), (5)

we assume [Go = A and B = 0,¢ > 1 for completeness



Algorithm 1: Stochastic Reweighted l2-Regularized Dual Averaging
Data: S,A>0,k>1,¢>0,e >0, >0

1 Set w; =0, go =0, 6y = diag([l, ey 1])

2 fort=1—1Tdo

3 Select Ay C S, where |A;| =k

4 Calculate §; € Of (we, A¢)

5 Compute the dual average g = %f]t_l + %gt

6

7

8

9

Compute the next iterate wgﬁl = fg,E“/(/\ + @t(ii))
Recalculate the next © by @iﬂ = 1/((w£ir)1)2 +€)
if ||we41 — we|| < 6 then

| Sparsify(wi41,€)
10 end
11 end
12 return Sparsify(wr41,€)

but is appended to the final solution w. The trick is to append every input
2 in the subset A; with an additional feature column which will be set to
1. This will alleviate the decision function with an offset in the input space.
Empirically we have verified that sometimes this design has a crucial influence
on the performance of a linear classifier.

2.3 Theoretical guarantees

In this subsection we will provide the theoretical guarantees for the upper bound
on the regret of the function ¢;(w) £ f(w, &) + W (w), such that for any w € R™

we have:
t

Ri(w) =Y (¢ (wr) = ¢r(w)). (6)

T=1

In this case we are interested in the guaranteed boundedness of the sum gen-
erated by this function applied to the sequences {{1,...,&} and {O1,...,6:}.
From [I2] and [I8] we know that a particular gap function defined as §; =
maxw{Zizl(@T, wy —w) + Py (w) — Py(w))} is an upper bound for the regret

Ot

v

Z(¢T (w'r) - ¢T(w)) = Rt(w) (7)

due to the convexity of f(w,&) [1]. In the next theorem we will provide the
sufficient conditions for the boundedness of d; if the imposed regularization is
given by the reweighted A-strongly convex term ||@tl/2w||§ + Al|w||3. Due to the
page limitations the proof of the following theorem is not included hereafter but
provided onlind?.

2|ftp://ftp.esat.kuleuven.be/pub/stadius/vjumutc/proofs/proofs_ri2rda.pdf


ftp://ftp.esat.kuleuven.be/pub/stadius/vjumutc/proofs/proofs_rl2rda.pdf

Theorem 1. Let the sequences {wi}i>1, {gt}i>1 and {O}i>1 be generated by
Algorithm [1. Assume H@tlﬁwﬂg > ||9§/2w|\2 for any w € R™, ¥ (wy) < ¥y (w),
llgill« < G, where || - ||« stands for the dual norm and constant A > 0 is given for

all Uy (w). Then: )

Riw) < O (1 +log (1)), 0

Our intuition is related to the asymptotic convergence properties of an iterative
reweighting procedure discussed in [7] where with each iterate of ©; our approx-
imated norm becomes ||@;wl|2 ~ ||wl||, with p — 0 thus in a limit applying the
lo-type of a penalty. This implies p;1 < p; and ||w||p,, > ||w]|p,. In the next
theorem we will relax the sufficient conditions on ¥;(w;) and ©;. This will in-
troduce into the bound a new term which governs the accumulation of an error
w.r.t. these conditions.

Theorem 2. Let the sequences {w:}i>1, {gth>1 and {O1}i>1 be generated by
Algorithm[l. Assume ||9tl/2w||2 - H@tl_ﬁwﬂg < w7 and Yy (Wiyr) — Pi(wy) <
vo/T for some T > 1, v1,v2 >0 and w € R™, ||gt||« < G, where || - ||« stands for
the dual norm and constant X\ > 0 is given for all U;(w). Then:

2

R (1) < log (w1 +12) + S (1-+ log (1)), (9)

The above bound boils down to the bound in Theorem [ if we set v, v to zero.

3 Simulated experiments

3.1 Experimental setup

For all methods in our experiments we use a 2-step procedure for tuning hy-
perparameters. This procedure consists of Coupled Simulated Annealing [17]
initialized with 5 random sets of parameters for the first step and the simplex
method [I1I] for the second step. After CSA converges to some local minima
we select a tuple of hyperparameters which attains the lowest cross-validation
error and start the simplex procedure to refine our selection. On every iteration
step for CSA and simplex method we proceed with a 10-fold cross-validation. In
[1-RDA and our reweighted l3-RDA we are promoting additional sparsity with
a slightly modified cross-validation criteria. We introduce an affine combination
of the validation error and obtained sparsity in proportion 90% : 10% where
sparsity is calculated as Y, I(|w®| > 0)/d.

All experiments with large-scale UCI datasets [6] were repeated 50 times
(iterations) with the random split to training and test sets in proportion 90% :
10%. Every iteration all methods are evaluated with the same test set to provide
a consistent and fair comparison in terms of the generalization error and obtained
p-values of a pairwise two-sample t-test. In the presence of 3 or more classes we
perform binary classification where we learn to classify the first class versus all



others. For CT sliced] dataset we performed a binarization of an output y; by
the median value. For URI dataset we took only "Day(0” subset as a probe. For
evaluation of the Algorithm [[lfor UCI datasets we set T = 1000, k =1, = 107>
and other hyperparameters A, € and € were determined using the cross-validation
tuning procedure described above. For extremely sparse datasets with d > n,
like Dexter and URI we increased k by 10 times. Information on all public UCI
datasets one can find in [6].

3.2 Numerical results

In this subsection we will provide an outlook on the performance of [;-RDA,
our reweighted lo-RDA and Pegasos [14] methods. We provide the results of the
Pegasos approach for the completeness and a fair comparison in terms of the
affected generalization error w.r.t. the obtained sparsity. In Table [[l one can see
generalization errors with standard deviations (in brackets) for different UCI
datasets. In Table [Il one can find asterisk symbols next to the results of our

Table 1. Performance

Dataset Generalization (test) errors
(re)l2-RDA 11-RDA Pegasos

Pen Digits  0.0745 ( ) )
Opt Digits  0.0680 ( ) ( ) (
Semeion 0.0619" ( ) ( ) (
Spambase  0.1228 ( ) 0.1205  ( ) (
Shuttle  0.0744  (£0.02) 0.0734 (£0.02) 0.0488 (
CT slices  0.0643°  (£0.02) 0.0845 (+0.13) 0.0478 (
Magic 0.2242 ( ) 0.2259  (£0.02) 0.2254  (£0.01
( ) ( ) (
( ) ( ) (
( ) ( ) (
( ) ( ) (

0.1043  (£0.04
0.0554
0.0414

0.0573  (+0.02
0.0356
0.0549

0.0989

CNAE-9 0.0109 0.0172 0.0448
Covertype 0.2670"
Dexter 0.0922"
URI 0.0458

0.2715
0.0956
0.0623

0.2791
0.0765
0.0388

method ((re)le-RDA). These symbols indicate p-values < 0.05 of a pairwise two-
sample t-test on generalization errors. Here p-values are reflecting the statistical
significance of having the null-hypothesis true: the equivalence of normal distri-
butions from which the test errors are drawn. By having two asterisk symbols
we assume strong presumption against null hypothesis w.r.t. both competing
methods, and by having one asterisk symbol - to at least one of them. Analyzing
Table [l we can conclude that for the majority of UCI datasets we are doing
equally good w.r.t. [;-RDA method and the significance of the obtained differ-
ence is quite high. One can see that for some datasets our reweighted lo-RDA
approach is doing better than Pegasos as well. This phenomenon could be un-
derstood from the underlying sparsity pattern which is likely to be very sparse
for some datasets, for instance CNAE-9.

3 originally it is a regression problem



3.3 Sparsity and stability

In this subsection we will provide some of the findings which highlight the en-
hanced sparsity of the reweighted l5>-RDA approach as well as the consistency
and stability for the selected set of features (dimensions). In Table 2] one can
observe the evidence of an additional sparsity promoted by the reweighting pro-
cedure which in some cases significantly reduce the number of non-zeros in the
obtained solution. We do not provide any results for the Pegasos-based approach
because it consists of a generic [s-norm penalty and a projection step which all
together do not provide sparse solutions. In Table [2] we provide the statistical
significance of the given result by an asterisk symbol. By analyzing the results
on immediately imply that in cases where we are performing equally good or
slightly worse the p-values are quite high. Next we perform several series of

Table 2. Sparsity >, I(jw®] > 0)/d

Dataset (re)l>-RDA 11-RDA
Pen Digits  0.12" (£0.06)  0.09  (+0.11)
Opt Digits 0.16" (£0.09) 024  (40.07)
Semeion  0.13" (£0.08)  0.19  (40.05)
Spambase  0.35 (£0.07) 0.34 (£0.08)
Shuttle 0.32 (£0.17)  0.32  (=£0.10)
CT slices  0.26" (£0.08)  0.21  (+0.05)
Magic 0.22" (£0.05) 0.34 (£0.15)
CNAE-9  0.02" (£0.01)  0.03  (40.03)
Covertype 0.06" (£0.03)  0.09  (40.06)
Dexter 0.08" (£0.07)  0.17  (40.06)
URI 0.0012" (40.0011) 0.0027 (40.0007)

experiments with UCI datasets to reveal the consistency and stability of our
algorithm w.r.t. the selected sparsity patterns. For every dataset first we tune
the hyperparameters with all available data. We run our reweighted lo-RDA
approach and [;-RDA [I8] method 100 times in order to collect frequencies of
every feature (dimension) being non-zero in the obtained solution. In Figure [l
we present the corresponding histograms. As we can see our approach results
in much more sparser solutions which are quite robust w.r.t. a sequence of ran-
dom observations. [;-RDA approach lacks these very important properties being
relatively unstable under the stochastic setting.

In the next experiment we adopted a simulated setup from [4] and created
a toy dataset of sample size 10000, where every input vector a is drawn from
a normal distribution N(0, I;x4) and the output label is calculated as follows
y = sign(aw, + €), where w =1for1<i< |d/2] and 0 otherwise and the
noise is given by € ~ N(0,1). We run each algorithm for 100 times and report
the mean F1l-score reflecting the performance of sparsity recovery. Fl-score is
defined ag 2precisionxrecall "oy oq

precision-+recall’

d NO) (i) d 5 () (i) _
.. ¢ T #£0,w Y =1) > ¢ I(w'#0,w,"” =1)
recision = ==L = recall = ==L L
P ¢ I(@D#0) ’ d I(wy)zl)

i=1




(a) Reweighted l5-RDA on OptDigits

(b) {1-RDA on OptDigits
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Fig. 1. Frequency of being non-zero for the features of Opt Digits and CNAE-9
datasets. In the left subfigures (a,c) we present the results for the reweighted l3-RDA
approach, while the right subfigures (b,d) correspond to [1-RDA method.

Figure 2 shows that the reweighted lo-RDA approach selects irrelevant features
much less frequently as in comparison to [;-RDA approach. As it was empiri-
cally verified before for UCI datasets we perform better both in terms of the
stability of the selected set of features and the robustness to the stochasticity
and randomness.

The higher the Fl-score is, the better the recovery of the sparsity pattern. In
Figure [ we present an evaluation of our approach and [;-RDA method w.r.t. to
ability to identify the right sparsity pattern as the number of features increases.
We clearly do outperform /;-RDA method in terms of Fl-score for d < 300. In
conclusion we want to point out some of the inconsistencies that we’ve discovered
comparing our Fl-scores with [4]. Although the authors in [4] use a batch-version
of the accelerated [;-RDA method and a quadratic loss function they obtain very
low Fl-score (0.67) for the feature vector of size 100. In our experiments all F1-
scores were above 0.7. For the dimension of size 100 our method obtains F1-score
~ 0.95 while authors in [4] have only 0.87.

4 Conclusion

In this paper we presented a novel and promising approach, namely Reweighted
lo-Regularized Dual Averaging. This approach helps to approximate very ef-
ficient ly-type of a penalty using a proven and reliable simple dual averaging



(a) Reweighted l>-RDA (b) 1,-RDA
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Fig. 2. Frequency of being non-zero for the features of our toy dataset (d = 100).
Only the first half of features do correspond to the encoded sparsity pattern. In the
left subfigure (a) we present the results for the reweighted lo-RDA approach, while the
right subfigure (b) corresponds to [;-RDA method.
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Fig. 3. Fl-score as the function of the number of features. We ranged the number of
features from 20 to 500 with the step size of 20.

scheme. Our method is suitable both for online and stochastic learning, while
our numerical and theoretical results mainly consider only stochastic setting.
We provided theoretical guarantees of the boundedness of the regret under dif-
ferent conditions and demonstrated the empirical convergence of the cumulative
training error (loss). Experimental results validate the usefulness and promising
capabilities of the proposed approach in obtaining much sparser and consistent
solutions while keeping the convergence of Pegasos-like approaches at hand.

For the future we consider to improve our algorithm in terms of the acceler-
ated convergence discussed in [4], [12], [I8] and develop some further extensions
towards online and stochastic learning applied to the huge—scale@ data.
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