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Abstract

Work-related musculoskeletal disorders are a growing problem in todays society.
These musculoskeletal disorders are caused by, amongst others, repetitive move-
ments and mental stress. Stress is defined as the mismatch between a perceived
demand and the perceived capacities to meet this demand. Although stress has
a subjective origin, several physiological manifestations (e.g. cardiovascular and
muscular) occur during periods of perceived stress. New insight and algorithms to
extract information, related to stress are beneficial. Therefore, two series of stress
experiments are executed in a laboratory environment, where subjects underwent
different tasks inducing physical strain, mental stress and a combination of both.

In this manuscript, new and modified algorithms for electromyography signals are
presented that improve the individual analysis of electromyography signals. A first
algorithm removes the interference of the electrical activity of the heart on single-
channel electromyography measurements. This interference signal is the major
source of contamination in the electrical activity of the muscles in the shoulder
and needs to be removed. The algorithm is based on a single-channel extension of
independent component analysis to identify statistically independent sources in the
signal. The extension consists of the decomposition of a single recording, using
ensembled empirical mode decomposition or wavelets and on which traditional
independent component analysis is applied.
A second data-driven algorithm estimates the rest-activation period from a muscle.
Several applications need an accurate estimation of the period when a muscle is in
rest. A new approach is presented, using the frequency content of the signals, which
is able to distinguish between the rest and the active state of a muscle without a
reference measurement or without the unreliable amplitude domain thresholding.
The signals of the muscles in the shoulder area showed an interesting specific
pattern during the stress experiments after removing the different artefacts. In
approximately 65% of the subjects, a continuous firing of a single motor unit, was
visible. This indicates a very low and subconscious muscle contraction without a
postural benefit. An algorithm to detect these single motor unit firings is presented.
The algorithm, based on an energy operator and correlation calculation, showed
an excellent performance as it reaches a sensitivity of 100% and a specificity of
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94,8%.

Another focus of the thesis is the physiological data interpretation during the stress
experiments. The muscle activity analysis of the muscles in the shoulder girdle did
not reveal any statistically significant increase in muscle activity. An activation
of the muscles in the shoulder girdle during the stress test was identified, but this
increase was not restricted to the periods where a mental task was executed. Even
more, several subjects showed also reactions on other muscles (in the face, the
lower back), revealing that the muscle activity analysis should not be limited to
the trapezius muscle, but broadened to a group of muscles where reaction due to
a mental stressor could be expected.
The analysis of the heart rate variability, a noninvasive estimation of the autonomic
nervous system modulation on the heart rate, showed a statistically significant
difference between the different tasks and revealed an extra reduced vagal
modulation when the physical and the mental task are combined compared to both
tasks seperately. Time-frequency analysis revealed that the effect of the mental
task on the physiological signals reduces over time. In an additional study on
pregnant women, we were not able to correlate the amount of reaction in the heart
rate variability during different conditions with the subjective scores of anxiety
and stress susceptibility of the pregnant women. This reveals that there is a clear
effect of the tasks on the heart rate variability itself, but this is not one-to-one
related with the stress level of the test subjects.
Both, the analysis of the muscle activity and the heart rate variability reveal the
need for individual analysis during stress monitoring. The stress system consists of
very complex interactions in the brain, which are at this moment not completely
understood. Those interactions, however, are responsible for the variability in
reaction of individual people on stressors: both in the intensity of the reaction as
in the physiological reaction itself.

A last focus of this thesis was the analysis of the combination of the oxygenation
and the electrical activity in the muscle, respectively measured and quantified by
near-infrared spectroscopy and surface electromyography, during a muscle fatigue
test. The combination of these two signals provides complementary information
regarding muscle fatigue. A typical four-phase response was identified in the
muscle oxygenation index, where different parameters could be linked with the
physiology. A medical application, of which a pilot study is described, where both
measurements are used, is the analysis of the progress of the disease in children
with a muscle disease (Duchenne Muscle Dystrophy).



Samenvatting

Werkgerelateerde musculoskeletale aandoeningen zijn een groot probleem in de
hedendaagse samenleving. Deze worden veroorzaakt door onder andere repetitieve
beweging en stress. Stress wordt veroorzaakt door een onevenwicht tussen de
subjectieve perceptie van een specifieke opdracht en de subjectieve perceptie van de
individuele capaciteiten om die opdracht tot een goed einde te brengen. Alhoewel
stress duidelijk een psychologische oorsprong heeft, worden fysiologische reacties
veroorzaakt door de stress. Nieuwe inzichten en algoritmes om stressgerelateerd
informatie uit de fysiologische signalen te halen, zijn nuttig. Daarom werden
experimenten uitgevoerd in een labo waar de proefpersonen verschilllende taken
ondergaan waar fysieke en mentale belastingen worden gëıinduceerd.

In dit manuscript worden nieuwe en aangepaste algoritmes voorgesteld voor
verbeterde individuele analyses van de spiersignalen. Een eerste algoritme
verwijdert het interferentie signaal van het hart op een éénkanaalsmeting van
het electromyogram. Dit algoritme is gebaseerd op een éénkanaalsuitbreiding
van onafhankelijke componenten analyse, waarbij onafhankelijk signaalbronnen
gëıdentificeerd worden in het signaal. Deze uitbreiding maakt eerst een
decompositie van het oorspronkelijke signaal via wavelets of via de empirische
mode decompositie techniek en gebruikt deze decomposities om onafhankelijke
componenten analyse toe te passen.
Een tweede algoritme gaat op zoek naar de periode van rust in de spiersignalen.
Dit is nodig voor verschillende toepassingen. Een nieuwe benadering wordt
beschreven waar gebruik wordt gemaakt van informatie in het frequentiedomein.
Deze benadering maakt het mogelijk om te differentiëren tussen een spier in rust
en een actieve spier, zonder gebruikt te moeten maken van een voorafgaande
referentiemeting of de onbetrouwbare amplitudeparameters.
De signalen van de spieren in de schouderstreek tonen, na verwijdering van
de interferentiesignalen, een specifieke activiteit tijdens de stressexperimenten
bij ongeveer 65% van de proefpersonen: de continue activatie van slechts één
motoreenheid. Dit betekent dat op dat moment slechts een aantal spiervezels actief
zijn die zorgen voor een zeer kleine en onbewuste contractie. Een algoritme dat
deze activiteit kan detecteren en lokaliseren is beschreven. Het algoritme maakt

v



vi

gebruik van de energie in het signaal en correlatieberekeningen en toont zeer goede
resultaten met een sensitiviteit van 100% en een specificiteit van 94,8%.

De focus van deze thesis richt zich op de interpretatie van de fysiologische
metingen tijdens de stress experimenten. De analyse van de spieractiviteit in de
schoudergordel toont geen statistisch significante toename van de spieractiviteit bij
een mentale belasting. Activatie van de schouderspieren tijdens de stresstaak werd
wel waargenomen, maar deze activatie was niet enkel beperkt tot de taken met
een mentale belasting. Verschillende proefpersonen toonden ook spieractiviteit
in de gezichtspieren en de spieren in de onderrug. Dit betekent dat de analyse
van de spieren tijdens stressmomenten niet beperkt mag worden tot de spieren in
de schoudergordel, maar dat ook de activiteit van de andere spieren in rekening
gebracht moet worden.
Hartritmevariabiliteit, een niet-invasieve maat voor de activiteit van het autonoom
zenuwstelsel, toont statistisch significante verschillen tussen de verschillende taken
en toont zelfs een additief effect van de mentale taak op de fysieke belasting.
Tijds-frequentie analyse toont dat het effect van de mentale belasting vermindert
over tijd. In een bijkomstige studie bij zwangere vrouwen werd er geen verband
gevonden tussen de sterkte van de fysiologische reactie en de subjectieve score van
angst en angstgevoeligheid van de zwangere vrouwen. Deze bevindingen tonen aan
dat met hartritmevariabiliteit kan aangetoond worden dat er een duidelijk reactie
vanwege de taak is, maar dat er geen één-op-één verband is met het stressniveau
van de proefpersoon.
Zowel de analyse van de spieractiviteit als van de hartritmevariabiliteit tonen aan
dat er nood is aan individuele analyse tijdens stressanalyse. Het stresssysteem
bestaat uit een heel aantal complexe interacties tussen verschillende gebieden in
de hersenen, die op dit ogenblik nog niet volledig uitgeklaard zijn. Deze interacties
zijn ervoor verantwoordelijk dat de stressrespons van verschillende personen heel
individueel verschillend is: zowel wat de intensiteit van de reactie betreft, als de
betrokkenheid van de verschillende fysiologische systemen.

Een laatste deel van de thesis is de analyse van zowel het zuurstofniveau als
van de elektrische activiteit van een spier, respectievelijk opgemeten via nabij-
infrarood spectroscopie and oppervlakte EMG, tijdens een spiervermoeiingstest.
De combinatie van de informatie die gehaald kan worden uit beide fysiologische
systemen zorgt voor complementaire informatie met betrekking op spiervermoei-
dheid. Het zuurstofniveau vertoont een typisch patroon tijdens een contractie,
waaruit verschillende parameters gehaald kunnen worden die verband houden met
de fysiologie. Een medische toepassing van het gebruik van beide meettechnieken
is de analyse van spierwerking tijdens een contractie bij kinderen met spierdystrofie
(ziekte van Duchenne) om de voortgang van de ziekte te kwantificeren.



Nomenclature

Symbols

a, b, . . . scalars
a,b, . . . vectors
A,B, . . . matrices
[ab] matrix with columns a and b
|a| absolute value of a
A′ transpose of the matrix A
r Pearson correlation coefficient
∑

sum

Metrics

nm nanometer
µm micrometer
cm centimeter
m meter
g gram
kg kilogram
ms milliseconds
s seconds
h hour
Hz Hertz
ml milliliter
mmHg millimeter mercury
mV millivolt
y year
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Abbreviations

1/f 1/f slope
ACT Activity Level of the muscle
ACTH AdrenoCorticoTropic Hormone
ANOVA ANalysis Of VAriance
ANS Autonomic Nervous System
ApEn Approximate Entropy
AV AtrioVentricular
BMI Body Mass Index
bpm beats per minute
BPV Blood Pressure Variability
BSS Blind Source Separation
CD Correlation Dimension
CI Confidence Interval
CNS Central Nervous System
CO Cardiac Output
ConText European project: Contactless sensors incorporated

in Textiles
CP Phosphocreatine
CRH Corticotropin Releasing Hormone
CWT Continuous Wavelet Transform
Cytox Cytochrome Oxydase
DAP Diastolic Arterial Pressure
DFA Detrended Fluctuation Analysis
DGC dystrophin-glycoprotein-complex
difNN difference between longest and shortest NN interval
DMD Duchenne Muscle Dystrophy
DPF Differential Path Length
DWT Discrete Wavelet Transform
DYN Semidynamic contraction
ECG ElectroCardioGram
EEG ElectroEncephaloGram
EEMD Ensemble Empirical Mode Decomposition
EEMD-ICA Ensemble Empirical Mode Decomposition in combination

Independent Component Analysis
EMD Empirical Mode Decomposition
EMG ElectroMyoGrapm
FD Fractal Dimension
FT Fourier Transform
FFT Fast Fourier Transform
GAS General Adaptation Syndrome



ix

Hb haemoglobin
HbO2 oxyhaemoglobin
HbR deoxyhaemoglobin
HD-EMG High Density Electromyography
HF High Frequency (in absolute values)
HFnu High Frequency (in normalized units)
HPA-axis Hypothalamus-Pituitary-Adrenocortical axis
HR Heart Rate
HRV Heart Rate Variability
ICA Independent Component Analysis
IMF Intrinsic Mode Function
IMT Intrinsic Mode Type Function
LE Lyapunov Exponent
LF Low Frequency (in absolute values)
LFnu Low Frequency (in normalized units)
MAP Mean Arterial Pressure
Mb myoglobin
MPF Mean Power Frequency
MPT phase with combined Postural and Mental Task
MSD MusculoSkeletal Disorders
MT phase with Mental Task
MU Motor Unit
MUAP Motor Unit Action Potential
MVC Maximal Voluntary Contraction
NIRS Near Infrared Spectroscopy
NL Noise Limit
NLdr Noise Limit detection rate
NLEO Non Linear Energy Operator
NN interval Normal-to-Normal interval
np noise parameter for EEMD
ns non-significant
O2 Oxygen
PCS Post-Conceptional Age
PANAS Positive Affect Negative Affect Schedule
pNN50 number of interval differences of successive NN intervals greater

than 50 ms divided by the total number of NN intervals
PNS Peripheral Nervous System
PSD Power Spectral Density
PT phase with Postural Task
R Rest (phase)
REM Rapid Eye Movement
RLE Rest Level Estimation
RMS Root Mean Square
RMSSD Root Mean Square of Successive Differences
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RRI R peak to R peak Interval
RSI Repetitive Strain Injury
RSA Respiratory Sinus Arrhythmia
RVC Relative Voluntary Contraction
S Sigh
SR Self-Rating
SAP Systolic Arterial Pressure
SampEn Sample Entropy
sEMG surface ElectroMyoGram
SENIAM Surface Electropmyography for the Non-Invasive

Assessment of Muscles
SD Standard Deviation
SDNN Standard Deviation of NN intervals
SDSD Standard Deviation of the Successive Differences
SMUF Single Motor Unit Firings
SNR Signal To Noise Ratio
STAT Static contraction
STAI State-Trait Anxiety Inventory
STFT Short-Time Fourier Transform
SV Stroke Volume
TFA Time-Frequency Analysis
TFR Time-Frequency Representation
TOI Tissue Oxygenation Index
TP Total Power
VDU Visual Display Unit
VLF Very Low Frequency (in absolute values)
wICA Wavelets in combination with Independent Component analysis
WT Wavelet Transform
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Chapter 1

Overview

1.1 Introduction

Work-related musculoskeletal disorders (MSD) are a growing problem in todays
society. MSD cover a wide variety of phenomena and experiences (discomfort,
disorders, pain) [61]. Musculoskeletal disorders are injuries of the muscles, nerves,
tendons, ligaments, joints, cartilage, or spinal discs and are not typically the result
of any instantaneous or acute event (such as a slip, trip, or fall) but reflect a
more gradual or chronic development. A wide range of acronyms and terms are
used to give a unified name to syndromes that are work-related, and appear at
different sites of the human musculoskeletal system. They give different names
according to the body part affected or the presumed pathomechanics of the injury.
Other expressions used to describe MSDs are: Repetitive Strain Injuries (RSIs),
Cumulative Trauma Disorders, Overuse Injuries, Repetitive Motion Disorders.
Medical terms used to describe MSDs to various parts of the body include low
back pain, carpal tunnel syndrome, trigger finger, myalgia . . . . MSD have personal
consequences, such as discomfort, pain, malfunctioning and disability. Moreover,
MSD have socio-economical consequences such as reduced productivity, reduced
performance and absenteeism. Forty to fifty percent of all work related absences
are affected by work-related MSD. This problem leads to losses of 0.5 to 2% of
GNP per year. The problem is noticed by the European Commission [52, 55].
These MSD occur when there is a mismatch between the physical requirements
and the physical capacity of the human body. The injuries are mainly associated
with effort, movements, postures and vibrations, but also with work organisation
and psychosocial factors. In the last decades, its prevalence has increased in a
varied range of occupations. This can be related to changes in work contents:
there has been a shift from work being dynamic and varied to work being more
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static, repetitive and monotonous. Workload has also become more stressful
[52, 53, 54]. Mental stress occurs from an imbalance between perceived demands
of the environment and perceived capacities of the person to meet those demands.
This imbalance can be originated by a too low, a boring demand or a too difficult
taks. In the last decades, the focus of research on the pathomechanisms of WMSD
has broadened from singularly physical mechanisms towards psychophysiological
pathomechanisms and its relation to stress.

Stress results in an activation of several physiological systems as described in 2.5.
Stress, whether purely physical or psychophysiological, generates a fight or flight
reaction to prepare the body to withstand the stressful situation. Stress activates
the hormonal system through the secretion of adrenalin and noradrenalin into
the blood stream. Noradrenalin is secreted to mobilize energy for stimulating
the cardiovascular system and the muscular system (high muscle tension). This
fight or flight reaction ceases when the balance between perceived demands and
perceived capacity is restored, i.e. when the stressor is no longer present. However,
a chronic exposure to stressors, such as experienced in working situations, can lead
to a chronic activation of the physiological systems such as amongst others the
muscular systems. Long term consequences can be musculoskeletal overload due
to insufficient recovery and repair of the muscle fibers. During prolonged mental
load and/or low physical activity, low threshold motor units are being ’overused’.
Although these units are assumed to be fatigue-resistant, overactivity can cause
metabolic disturbances and degenerative processes. Accumulation of inflammatory
substances and elevated muscle stiffness leads to increased pain sensitivity which
evolves into a vicious circle of increasing muscle tension and pain. The trapezius
muscle has been found to be particularly sensitive to stress [67, 82, 73]. Prolonged
muscle tension, joint overloading, reduced blood perfusion and acidification of the
muscle which compromises the tissue quality, can cause musculoskeletal disorders.

Electromyography (EMG) can help to understand the mechanisms and the impact
of stress on muscle activity. In laboratory studies, researchers have studied EMG-
signals during the performance of a mental task (e.g. Stroop Color Word test,
mental arithmetic test, memory tasks). They found that mental workload increases
trapezius muscle activity [6, 17, 50, 89, 92, 96, 181]. Stressful circumstances,
such as verbal provocation during performance and time pressure also increase
muscle activity [180]. However, several researchers have reported considerable
inter-individual differences in muscle activity response to a stressor [186, 98, 115,
173].

The relationship between EMG-activity and pain or musculoskeletal disorders has
been studied in several case-control studies in varied types of occupation, such
as VDU-workers (video-display-unit-workers), supermarket cashiers, chocolate
packers, medical secretaries, etc. An important finding is that the number of
EMG rest periods or ’EMG-gaps’ (very short periods of muscle rest) is lower in
pain-afflicted subjects [67, 115, 139, 167]. These findings emphasize the importance
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of (micro-) pauses in the battle against MSD. Crenshaw et al [32] found that pauses
did not influence muscle activity, but pauses do benefit the blood circulation
and muscle oxygenation. Moreover, pain-afflicted subjects have less and slower
deactivation or recuperation after work compared with pain-free subjects [73, 95].
This suggests that relaxation during work and in leisure time is essential to prevent
MSD.

EMG activity does not always correlate with other physiological parameters, such
as heart rate, blood pressure, level of cortisol and catecholamines [89, 82, 135].
This suggests that other physiological parameters are also necessary to measure
stress. Also, perceived muscle tension, perceived general tension or mood states do
not always correlate with EMG activity [135, 173]. Therefore, other physiological
parameters can be analyzed. One of the most important parameters is the beat-to-
beat alterations of the heart rate, known as heart rate variability (HRV). Several
researchers [1, 165] have shown that information extracted from HRV can be linked
with activity of the autonomic nervous system. The autonomic nervous system
is not only affected by postural activity, but also by changes in the psychological
state of a subject. HRV may therefore offer a powerful tool for clarifying the
relationship between psychological and physiological processes.

The myoelectric signal is not the only physiological signal that can be measured
from the muscle. Near-Infrared Spectroscopy (NIRS) is an important technique
to retrieve information about the oxygenation in the muscle. Information about
the muscle oxygenation can benefit in the battle against MSD and muscle pain as
stated earlier. The analysis of the combination of EMG and NIRS can improve
the insight into the functioning of a muscle and can result in a better estimation
of possible malfunctioning of the muscle.

1.2 Aim of the thesis

A first goal of the thesis is the development and modification of new or existing
algorithms to improve the individual analysis of electromyography signals. A first
algorithm aims to remove the interference of the electrical activity of the heart
on single-channel electromyography measurements, which is the major source of
interference in the signals of the muscles in this region. Hereafter, a data-driven
algorithm is presented that estimates the rest-activation period from a muscle
using its electrophysiological signal.

A second goal of the thesis is the determination of the influence of mental stress on
different physiological signals: the heartrate variation and the electrical activity
of the muscles in the shoulder girdle. Next to the traditional electromyography
parameters to quantify the EMG activity, the aim was to identify specific EMG
patterns during periods with mental load and detect this patterns using signal
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processing.
The beat-to-beat variability of the heart is investigated, to study the autonomic
nervous system, influenced by the mental load. In addition to the traditional HRV
parameters, time-frequency analysis can be applied to improve the time resolution
of the detect changes.
In a study on pregnant women, the relationship between the amount of perceived
stress, measured via questionnaires, and the amount of physiological reactions, via
HRV analysis is investigated.

A last goal of this thesis is combining oxygenation information from the muscle
with its electrophysiological activation during a muscle fatigue test. A combination
of this multimodal data can provide additional information in different applications.
This information is used in a medical application where the progress of a muscle
disease (Duchenne Muscle Dystrophy) in children is investigated.

The most important hypotheses of this manuscript are:

1. The electrical interference of the heart on the electromyography signals
can be removed from a single surface electromyography measurement using
advanced signal processing techiques.

2. The trapezius muscle activity and the variability of the heart rate are
influenced by all types of mental stress.

3. The complexity of the stress system and the interindividual physiological
reaction profiles require algorithms that are applicable on individual basis.

4. Combining myoelectrical and muscle oxygenation information during sus-
tained contraction improves the physiological insight in healthy and patho-
logical muscles.

1.3 Collaboration

1.3.1 Department of Kinesiology and Rehabilitation Sciences,
K.U. Leuven

A huge part of my work is executed in the labo of ergonomics and biomechanics
under the supervision of prof. dr. ir. Arthur Spaepen at the department of
Kinesiology and Rehabilitation Sciences (FaBeR). The main focus of the research
in this group is the use of surface electromyography (sEMG) as a qualitative
measure in ergonomics, consultancy in ergonomics and biomechanical modelling
during gait analysis and the upper limb movement. Together with Katrien Van
Damme and Tine Adriaensens, I worked as a researcher for the ConText project
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(see section 1.3.2). The sEMG data acquisition, data analysis and interpretation
were performed in this laboratory. Besides this, we supported the development of
the capacitive sensors, the design of the shirt and the positioning of the electrodes
in the ConText shirt via different measurements and analysis.

1.3.2 ConText

The main part of the work was performed within the framework of the
European project ConText (Contactless sensors incorporated in Textiles for stress
monitoring; IST-027291). The project ran 3 years from January 2006 till December
2008. The objectives of the project were the development of a home monitoring
shirt to obtain unobtrusive sEMG signals enabling long term recordings with
applications in stress monitoring and musculoskeletal disorders by acquiring the
EMG signals using contactless capacitive sensors. These sensors are incorporated
into textiles to increase comfort for the end user. This project was in collaboration
with several partners across Europe.

• Philips Research (The Netherlands), was the project leader. Their
main focus was the development of a capacitive sensor with the focus on
sEMG signals.

• TNO (The Netherlands), developed the design of the shirt with the focus
on comfort and usability. TNO also developed a printing technology to print
conductive wires on the textile. They went to the end user in collaboration
with Clothing + to look for other applications with the developed technology.

• TITV (Germany), compared the different existing conductive wires and
incorporated the best suitable material in textiles via weaving.

• T.U. Berlin (Germany), created the embroidered capacitive sensor. They
also worked on the encapsulation of the electronics onto the textile with
respect to comfort and sustainability.

• Clothing+ (Finland), investigated the use of lamination and for the
development of a capacitive sensor. They looked for potential new
applications of the developed technology with TNO.

• K.U. Leuven (Belgium), worked on the application of the project.
Several measurements of sEMG and ECG were performed in a laboratory
environment and the signals were analysed. They supported the development
of the capacitive sensors, the design of the shirt and the positioning of the
electrodes in the shirt.
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(a) Prototype II ConText vest. (b) Optimised capacitive sEMG sensor
(Philips).

(c) Embroidered capacitive sensor (T.U.
Berlin).

(d) Laminated capacitive sensor (Clothing +
and T.U. Berlin)

(e) sEMG measurement with the laminated capacitive sensor on the Biceps
Muscle (Philips and K.U. Leuven)

Figure 1.1: Pictures of achievements in the European project ConText
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The most important achievements of the projects are presented in figure 1.1.
Figure 1.1(a) shows the second prototype of the ConText vest, designed by TNO
and Clothing+. The materials were selected and the design was optimised to have
a narrow fit in the areas where perfect contact is needed (e.g. shoulder area). The
EMG sensors were incorporated in the demoshirt to measure the trapezius muscle.
The conductive area at the back of the shirt measures the reference signal for the
EMG signals. Figure 1.1(b) shows the optimized capacitive sensor, developed by
Philips. This sensor is more robust to movement artifacts. Figure 1.1(c) is an
enlargement of the shoulder of the first prototype shirt and shows an embroidered
capacitive sensor made by T.U. Berlin. The electronics of the sensors are included
on a flexible substrate and a textile bus structure to transfer the data is visible.
The test sensor is shown in figure 1.1(d). This is a laminated capacitive sensor
incorporated into textiles to measure the sEMG. This electrode has been used to
test on different muscles. An EMG measurement, using this capacitive laminated
sensor, is shown in figure 1.1(e). The sensor is placed on the biceps muscle and
several contractions are executed. These contractions are clearly visible in the
EMG signal.

1.3.3 Other Collaborations

Several collaborations with other groups are set up for several studies described
in this manuscript:

• Research Group on Health Psychology, K.U. Leuven. One of the
two stress experiments were executed in close collaboration with dr. Elke
Vlemincx from the group of Prof. dr. Omer Van den Bergh. During
these measurements, the test subjects underwent different tasks, imposing a
mental effort on them, while several physiological signals (EMG, ECG and
respiration) were acquired. One of the topics of the research of this group is
the effect of sighing as a psychophysiological resetter in stress situations.

• Developmental Psychology, Universiteit van Tilburg, The Nether-
lands. A large study is performed in the group of prof. dr. Bea Van
den Bergh about the influence of the stress of a pregnant mother on the
cognitive development of their babies. At this moment, the level of stress
and anxiety of the mothers is derived using psychological questionnaires,
but the question is whether the physiological parameters, related to stress,
could be a better classifier. Several physiological signals of the mothers are
acquired at several time instants during their pregnancy next to different
physiological parameters of the babies after birth. This study is part of a
large European research project EuroSTRESS [46].

• U.Z. Gasthuisberg, Division of Neonatology, K.U. Leuven. Together
with dr. Joke Vanderhaegen from the group of prof. dr. Gunnar Naulaurs,
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we explored the combination of surface electromyography and Near Infrared
Spectroscopy (NIRS) during and after muscle fatigue exercises. In the group
of neonatology, the NIRS is used to monitor the oxygenation of the brain of
premature babies for more effective threatment.

• U.Z. Gasthuisberg, Division of pediatric neurology, K.U. Leuven.
This group of prof. dr. Gunnar Buyse works with children with Duchenne
Muscle Distrophy. The diagnosis of DMD is based on clinical signs and
indirect measures. They are starting up research to measure the response
of the oxygenation and the electrophysiology of the muscle after a physical
effort.

1.4 Chapter-by-chapter overview

In this section, the content of the different chapters is provided. Figure 1.2 shows
an overview of the different chapters in this manuscript and their relationship with
each other. Table 1.1 gives an overview of the different experiments and shows in
which section each dataset is used.

Chapter 1

In this chapter, a general introduction and an overview of the work is presented.
Furthermore, the different goals of the thesis are addressed and an overview of the
personal contributions is provided.

Chapter 2

Chapter 2 provides a scientific basis for the following chapters. In a first subsection,
the different mathematical techniques, used throughout the thesis, are summarized.
The described techniques are Independent Component Analysis (ICA), Wavelet
Transform (WT), ensemble empirical mode decomposition (EEMD) and time-
frequency analysis (TFA).

The anatomy of a muscle is introduced in section 2.2 next to the use of the surface
electromyography (sEMG) to measure the electrical activity of the muscle and the
traditional time and frequency parameters that are derived from the sEMG signals
to analyze the signals.

Section 2.3 provides an overview of the different steps to retrieve heart rate
variability (HRV) results from ECG signals, including the peak detection and the
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Figure 1.2: Overview of the chapters in this thesis.



1
0

O
V

E
R
V

IE
W

Table 1.1: Overview of the different experiments used in this thesis. This table shows in which section each data set is used.

Experiment Description Subjects Duration Analyses Collaboration
(Section) (#)

Stressexp 1 3.2 28 max 39min ECG Removal (3.3) ConText
Single motor unit firing (3.4)
Rest Level Estimation (3.5)
EMG analysis (3.6)
HRV analysis (4.2)

Stressexp 2 3.2 43 42min ECG Removal (3.3) ConText
EMG analysis (3.6) KUL Psychology
HRV analysis (4.2)

Stress pregnancy 4.3.2 180 24h HRV vs. Anxiety (4.3) University Tilburg

EMG + NIRS 5.2 34 ± 40min Muscle fatigue (5.3) KUL Neonatology

DMD 5.5 18 15min Muscle contraction (5.5) KUL pediatric neurology
KUL Neonatology
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preprocessing. Afterwards, the linear, nonlinear and time frequency parameters,
used in this manuscript, are summarized.

The near infrared spectroscopy (NIRS) measurement and the parameters to
measure the oxygenation of the tissue is described in section 2.4.

In the last part of this chapter (section 2.5), an introduction of stress is described.
Stress is introduced as both a psychological and physiological phenomenon.
Therefore, we refer to stress as a psychophysiological phenomenon.

Chapter 3

Chapter 3 gives an overview of the signal processing and the analysis of the sEMG
signals. In a first section 3.2, the data, used within the manuscript, are described.
Two stress experiments are conducted where a mental stress was induced on the
test subjects. This mental task was combined with and without an extra physical
load. These data were collected and analysed for the European project ConText.

In section 3.3, the removal of ECG interference in sEMG signals of the shoulder
girdle is described. This ECG interference signal is the most important noise
influence in these sEMG signals. Together with my colleague Bogdan Mijovic, a
single channel approach of independent component analysis was elaborated and I
applied it to remove the ECG interference signal from a single EMG signal. These
techniques were expanded to situations where a simultaneous ECG measurement is
available. The results of these techniques were compared with a standard technique
to remove the interference signal.

During the analysis of the sEMG signal of the trapezius muscle during the stress
assessment tasks, a specific pattern of muscle activity could be identified which is
not published earlier in this situation using this type of electrodes. This muscle
activity is a continuous activation of single type I motor unit. A spike train
detection algorithm is modified to detect this type of activity. This observation
and detection algorithm is described in section 3.4.

In the next section (3.5), an algorithm to estimate whether a muscle is active or
in rest is presented. This algorithm is based on the frequency properties of the
sEMG signals in both situations. We used this algorithm to estimate the baseline
of the different sEMG signals during the stress assessment task.

The last section (3.6) shows the most important results of the analysis of the
different sEMG parameters during the stress experiments. The effect of the mental
task on the standard parameters is discussed, next to the analysis of muscle fatigue
during the different tasks. We also looked at the additional effect on the muscle
activity from the mental load on a physical load.
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Chapter 4

The results of the HRV analysis on the two stress experiments (described in section
3.2) are presented in section 4.2. More specifically, the additional effect on the
different HRV parameters of a mental load on top of a physical load is studied
using the traditional linear HRV parameters. To increase the time resolution
of the variations of the parameters during the test, time frequency analysis are
applied.

In the next section 4.3, the aim was to investigate whether anxiety during
pregnancy, as indicated by the questionnaires, can be linked with differences in the
autonomic heart rate modulation via HRV parameters during both a 24h recording
of the ECG and a stress test where a mental load is induced. The hypothesis was
that perceived stress, indicated via subjective questionnaires, will be reflected in
differences in HRV measures so that we would be able to distinguish between a
low and a high anxiety group using these HRV parameters. The nonlinear HRV
measures are used next to the traditional linear HRV measures.

In the last section 4.4, a short overview of the most important influences of
respiration are discussed. The effect of the respiration, and more specific sighing,
during a stress task will be explored. The psychophysiological interpretation of
sighing as a physiological resetter has become a large topic in research. During
the second experiment, the respiration was included as one of the physiological
signals, so this analysis could be included. In the literature, there is a huge ongoing
discussion about the role of respiration in HRV analysis which is discussed in the
second part of this section.

Chapter 5

In a first part, the myoelectric and oxygenation mechanisms of muscles during
muscle fatigue is described. More specifically, the behavior of the indiviual sEMG
and NIRS parameters and their relationship in the biceps brachii muscle until
exhaustion after isometric static and semidynamic exercises are investigated.

In a second part, the sEMG and NIRS parameters are used to investigate the
response of the oxygenation and the myoelectric signals of the muscle after a
physical effort on patients with Duchenne Muscle Dystrophy in a pilote study.

Chapter 6

The last chapter summarizes the work presented in the different chapters and
formulates the main conclusions of this manuscript. Moreover, several suggestions
for future research are described.
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1.5 Personal Contribution

As discussed previously, I collaborated in several projects both in EU context and
in a bilateral agreement with various divisions in K.U.Leuven and U.Z. Leuven. In
general, I contributed to the data acquisition, the signal analysis, the algorithm
modifications and the interpretation of the results.

I was involved in the acquisition of all the data used throughout this manuscript.
I was responsible, together with my colleagues at FaBeR, for the design of both
protocols, the laboratory set up and the acquisition of the data of the stress
tests (described in section 3.2). The second set of experiments were performed
in collaboration with dr. Elke Vlemincx of the group of psychology at the K.U.
Leuven. These data were used for the HRV and sEMG analysis. I included the
stress assessment task in the protocol during the recording of the ECG of the
pregnant women (section 4.3).

I did all the data analysis of the sEMG signals and the interpretation of these
results was done together with my colleagues at FaBeR. I modified and tuned
several algorithms that were used in the sEMG signal analysis. Together with my
colleague Bogdan Mijovic, we worked on a single channel approach of independent
component analysis and I applied it to remove the ECG interference from the
sEMG signals. I compared its results with the results of the standard method
that is used nowadays. During the visual inspection of the sEMG signals of the
trapezius muscle, I observed the single motor unit firing and modified and tuned
an existing algorithm to detect this specific sEMG signal pattern. This algorithm
was able to localize all these types of sEMG activity. I developed an easy-to-use
algorithm, based on the frequency properties of sEMG signals, that is able to
distinguish between rest and contraction in a muscle. This algorithm is applied to
estimate the baseline of the different sEMG signals during the stress assessment
task as no baseline session was included in the measurements.

The HRV analyses of the two experiments were performed in close collaboration
with my colleague at ESAT, Steven Vandeput. We collaborated in the analysis
of the ECG signals, the statistics and in the interpretation of the results. The
analysis and the interpretation of the data from the pregnant women is executed
by myself in close collaboration with Steven Vandeput and Devy Widjaja. The
analysis of the sighing was mainly performed by Elke Vlemincx, but I contributed
to the interpretation of some results.

I set up a collaboration with the division of neonatology of prof. dr. Gunnar
Naulaers and dr. Joke Vanderhaegen to use NIRS for muscle activity and with
the division of pediatric neurology of prof. dr. Gunnar Buyse to measure the
children with the Duchenne Muscle Dystrophy (DMD). I was responsible for the
design of the protocols, the laboratory setup and the acquisition of the data of
simultaneous sEMG and NIRS on both healthy subjects and children with DMD,
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next to the data analysis, statistical analysis and the physiological interpretation
of the results. These results are described in chapter 5. For the data analysis of
the children with DMD, I worked together with my colleague Alexander Caicedo
Dorado.



Chapter 2

Methodology: State of the art

Chapter 2 introduces the mathematics, the physiological background and signals,
necessary for a good understanding of the thesis. First the mathematical
techniques are presented in Section 2.1. This section gives an overview of
Independent Componentent Analysis (ICA), Time Frequency Analysis (TFA) and
the introduction to wavelets and finally Ensemble Empirical Mode Decomposition
(EEMD). Section 2.2 describes the physiological background of a muscle and
introduces surface electromyography and its most important parameters. The
physiology of the heart, the heart rate variability, its preprocessing and linear and
non linear parameters are discussed in section 2.3. The near infrared spectroscopy
(NIRS) measurement and the parameters to measure the oxygenation of tissue is
described in section 2.4. In the last section (section 2.5), an introduction of stress
is described. A summary of the physiology and the psychology of stress is given in
this section.

2.1 Mathematical background

2.1.1 Independent Component Analysis (ICA)

Blind Source Separation (BSS)

A good example to introduce the principle of blind source separation (BSS) is the
so-called cocktail party problem. In one room, n people are speaking simultaneously
producing each a signal sn(t). (k) microphones are located at different places in
the same room and are recording simultaneously the conversations, denoted with

15
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Figure 2.1: Illustration of the cocktail party problem. A linear mixture of the three
different conversations is recorded at the three microphones. (From [37])

xk(t). The recordings xk(t) are a linear mixture of the different conversations sn(t)
and is presented in equation 2.1.















x1(t) = a11s1(t) + a12s2(t) + . . .+ a1nsn(t)
x2(t) = a21s1(t) + a22s2(t) + . . .+ a2nsn(t)
. . .
xk(t) = ak1s1(t) + ak2s2(t) + . . .+ aknsn(t)

(2.1)

where a11, a21 . . . are the mixing parameters that depend on the distances of the
microphones from the speakers (to simplify the model, the delay of the signal,
other extra factors and noise in the room are omitted). In signal processing, the
challenge is to retrieve the signals yk(t), which are estimates of sk(t), from the
recordings xk(t). Figure 2.1 gives an overview of the problem (with k = 3 and
n = 3). A and W are respectively called the mixing and the unmixing matrix.
When the information of the mixing matrix A is available, the source signals
can be estimated using classical linear algebra. However in most real situations,
this information is not present making the problem considerably more challenging.
Extra assumptions and prior information needs to be included to retrieve the
original sources sn(t). The mathematical techniques that focus on solving this
problem are called blind source separation techniques. These techniques can be
applied on several applications where the research problem can be estimated by
equation 2.1.
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Independent Component Analysis (ICA)

One approach to estimate the mixing matrix and calculate the different sources
from equation 2.1 is using information on the statistical properties of the sources
s(t) to estimate the mixing matrix A. Independent Component Analysis (ICA)
assumes that the sources s(t) are mutually statistically independent [78]. In the
case of a cocktail party problem, this is a valid assumption. In more general terms
for signal processing, ICA is a computational method for separating a multivariate
signal into additive subcomponents supposing the mutual statistical independence.
Statistically independency is a stronger assumption than uncorrelation: two
statistically independent variables implies that they are uncorrelated, but the
opposite is not valid. As ICA is trying to estimate the mixing matrix derived
from properties of the sources, two limitations of the technique are appearing.
The variances of the independent sources cannot be determined (assume that
each independent component has unit variance E{s2i } = 1) and no order of
the independent sources can be found. Fortunately, in most applications these
limitations are insignificant.

One fundamental restriction in ICA is that the independent components must
be nongaussian to make ICA applicable [78]. The mixing matrix A can not
be identified for gaussian independent components. More specifically, at least
one independent component has to be non gaussian. According to the central
limit theorem (CLT), a mixture of two source signals will be more gaussian than
the two original source signals. Several methods exist to distinguish between
the different independent sources. The most used method is maximizing the
nongaussianity of each of the independent sources. Several measures can be
used to maximise this nongaussianity: the classical measure is the kurtosis or
the fourth order cumulant, but also the negentropy and known approximations of
negentropy are used. Another approach to look for independency is minimizing
the mutual information between the sources. Hyvärinen showed in his book [77]
that minimizing the mutual information is equivalent as finding the direction in
which the entropy is maximized. In [77, 91], several implementations of ICA are
described.

In this work, the fastICA algorithm [76] will be used. This algorithm uses
a computationally more efficient approximation for negentropy to estimate the
different independent sources. This approach is roughly 10 times faster than the
conventional methods [192] to calculate the negentropy. The sources are extracted
one after each other. This technique has been applied multiple times in the field
of biomedical signal processing [76, 87, 64].
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Figure 2.2: The most known time-frequency representation: a music line (From [4]).

2.1.2 Time-Frequency Analysis (TFA)

The traditional frequency domain analysis methods, applied on the whole signal,
are not reliable when the signal is nonstationary, which means that different
instantaneous signal properties, such as the signal amplitude or the spectrum
properties, are not constant over time. The spectrum, extracted from the Fourier
Transform, essentially tells us which frequencies are present in the signal, as well
as their corresponding amplitudes and phases, but does not tell us at which times
these frequencies occur. Luckily, techniques exist that combine both time and
frequency information simultaneously, the so-called time-frequency representations
(TFR). The best known example of a representation that gives both time and
frequency information is a music line (see figure 2.2). The rhythm contains the
time information while the note gives the tone (more specifically the frequency) at
which the rhythm needs to be executed at that specific time instant.

In signal processing, different techniques are available to create a TFR from a time
series. An overview of the most important techniques is given by Auger et al [7],
but here the basic short-time Fourier transform (STFT) and the more advanced
wavelet transform (WT) are discussed. A schematic illustration of the differences
between time series representation, Fourier transform, STFT and CWT is shown
in Figure 2.3 and will be explained more in detail in the following subsections.

Short-time Fourier Transform (STFT)

The traditional Fourier Transform (FT) decomposes the time signal in different
sine waves with a specific frequency. A sine wave is an continuous oscillating signal,
removing all the time information and thus implying stationarity from the signal.
In order to introduce time-dependency in using a Fourier transform, a simple and
intuitive solution consists in pre-windowing the signal x(u) around a particular
time t during which the signal is stationary, calculating its Fourier transform, and
doing that for each time instant t. The resulting transform, called the short-time
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Figure 2.3: A schematic illustration of the differences between time series analysis,
Fourier transform, short-time Fourier transform and continuous wavelet transform
regarding the time and frequency resolution. Time series analysis show a perfect time
resolution and no frequency resolution, while the Fourier transform yields no time
resolution. Short Time Fourier Transform has a fixed time and frequcy resolution while
this is variable for wavelets.

Fourier transform (STFT), is given in formula 2.2.

Fx(t, f ;h) =

+∞
∫

−∞

x(u) · h∗(u− t) · e−j2πfu · du (2.2)

where h(t) is a short-time analysis window localized around t = 0 and f = 0. The
STFT is also invertible, but this type of time-frequency representation has a trade-
off between time and frequency resolutions. On one hand, a good time resolution
requires a short window h(t) while on the other hand, a good frequency resolution
requires a narrow-band filter and thereore a long window h(t). This limitation is
a consequence of the Heisenberg-Gabor inequality.
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If we consider the squared modulus of the STFT, we obtain a spectral energy
density of the locally windowed signal x(u)h∗(u− t):

Sx(t, f) =

∣

∣

∣

∣

∣

∣

+∞
∫

−∞

x(u) · h∗(u− t) · e−j2πfu · du

∣

∣

∣

∣

∣

∣

2

(2.3)

This defines the spectrogram, which is a real-valued and non-negative distribution.
Since the window h of the STFT is assumed of unit energy, the spectrogram
satisfies the global energy distribution property :

Ex =

+∞
∫

−∞

+∞
∫

−∞

Sx(t, f) · dt · df (2.4)

Therefore, we can interpret the spectrogram as a measure of the energy of the
signal contained in the time-frequency domain centered at the point (t, f).

Wavelet transform

The Fourier transform is a tool widely used for many scientific purposes. However
it is only well suited to the study of stationary signals where all frequencies have
an infinite coherence time. The Fourier analysis brings only global information
which is not sufficient to detect compact patterns. Gabor introduced a local
Fourier analysis, taking into account a sliding window, leading to a time frequency-
analysis. This method is only applicable to situations where the coherence time is
independent of the frequency. This is for instance the case for singing signals which
have their coherence time determined by the geometry of the oral cavity. Morlet
introduced the Wavelet Transform in order to have a coherence time proportional
to the period. A wavelet is, as its name suggests, a ’small wave’. A small wave
grows and decays essentially in a limited time period. The contrasting notion is
obviously a ’big wave’. An example of a big wave is the sine function, which keeps
on oscillating up and down. The sine function is, as described earlier, the basic
function for Fourier Transform. A basic function Ψ(t), called the mother wavelet,
is a wavelet if the function satisfies 2 basic properties.

1. The integral of Ψ(t) is zero:
∫ ∞

−∞

Ψ(t) dt = 0 (2.5)

2. The square of Ψ(t) integrates to unity:
∫ ∞

−∞

Ψ(t)2 dt = 0 (2.6)
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The first property indicates that every positive excitation of the wavelet is
compensated by an equal negative excitation. The second property says that there
is an excitation in a finite interval [-T,T]. The nonzero activity of the wavelet is
limited to the finite interval. Several wavelets that satisfy both conditions are
published (Haar, Morlet, Gaussian, Daubechies, Meyer, Mexican hat, . . . )[34].
Some of them are illustrated in Figure 2.4.

The idea of wavelet transform is to project a signal x(t) on a family of zero-mean
functions (the wavelets) deduced from an elementary function (the mother wavelet)
by translations and dilations:

Tx(t, a; Ψ) =

+∞
∫

−∞

x(s) · Ψ∗
t,a(s) · ds (2.7)

where

Ψt,a(s) = |a|
−1/2

· Ψ

(

s− t

a

)

. (2.8)

The variable a corresponds now to a scale factor, in the sense that taking |a| > 1
dilates the wavelet Ψ and taking |a| < 1 reduces Ψ. By definition, the wavelet
transform is more a time-scale than a time-frequency representation. However, for
wavelets which are well localised around a central frequency f0 at scale a = 1, a
time-frequency interpretation is possible thanks to the formal identification f = f0

a .
The basic difference between the wavelet transform and the short-time Fourier
transform is as follows: when the scale factor a is changed, the duration and the
bandwidth of the wavelet are both changed but the waveform remains the same.
In contrast to the STFT, which uses a single analysis window, the WT uses short
windows at high frequencies and long windows at low frequencies resulting in a
good frequency resolution at low frequencies and a good time resolution for higher
frequency. This partially overcomes the resolution limitation of the STFT as the
bandwidth B is proportional to f . When the scales are changed continuously and
the wavelet is shifted continuously, this transform is called the Continuous Wavelet
Transform (CWT). In reality, these time and scale changes are discretised. The
steps between two consecutive scales and time shifts are selected according to the
application. In this situation, CWT is sometimes called the discretised CWT.

Using CWT, a similar distribution to the spectrogram can be defined. Since the
continuous wavelet transform behaves like an orthonormal basis decomposition, it
can be shown that it preserves energy:

Ex =

+∞
∫

−∞

+∞
∫

−∞

|Tx(t, a; Ψ)|
2
· dt ·

da

a2
(2.9)
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Figure 2.4: Illustration of several types of mother wavelet functions: Morlet wavelet
(top left), Mexican hat wavelet (top right), Meyer wavelet (middle left), Gaussian
wavelet (middle right), complex Shannon wavelet (bottom left), complex frequency B-
spline wavelet (bottom right).
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where Ex is the energy of x. This leads us to define the scalogram of x as the
squared modulus of CWT. It is an energy distribution of the signal in the time-
scale plane, associated with the measure dtda

a2 . As for the wavelet transform, time
and frequency resolutions of the scalogram are related via the Heisenberg-Gabor
principle: time and frequency resolutions depend on the considered frequency. As
the STFT was inversible, the signal x can also be reconstructed from its continuous
wavelet transform according to the formula:

x(t) =

+∞
∫

−∞

+∞
∫

−∞

Tx(s, a; Φ) · Ψs,a(t) · ds ·
da

a2
(2.10)

A CWT contains a lot of redundant information. Using a good selection of scales,
the redundancy can be removed. A specific example is when the distribution of
the scales is dyadic (2n). This is called the Discrete Wavelet Transform (DWT).
The DWT can also be seen as a filter bank analysis composed of band-pass
filters with constant relative bandwidth. Figure 2.5(a) illustrates a 3 level DWT
decomposition. The original signal is sent through a half band high pass filter h[n]
obtaining the details di and through a half band low pass filter g[n] obtaining the
approximations ai. The details and the approximations are downsampled with
a factor 2 and the approximations are again filtered using the same half band
filters. The filter coefficient of h[n] and g[n] are dependent on the selected mother
wavelet. The decomposition in figure 2.5(a) results in three levels of details and
1 approximation signal. The effect of the filtering in the frequency domain is
presented in figure 2.5(b). This figure shows that each decomposition bisect the
frequency content.

2.1.3 Ensemble Empirical Mode Decomposition (EEMD)

Empirical Mode Decomposition (EMD) [75] is a new tool to analyze the
nonstationary signals. Like other methods (e.g. wavelets), EMD decomposes into
different components [51]. Wavelets and other signal decomposition techniques
tend to map the signal space onto a space spanned by a predefined basis, but once
the selected basis does not match with the signal itself very well, the results are
often unreliable. In contrast, EMD is a data driven algorithm which means that
it decomposes the signal in a natural way where no a priori knowledge about the
signal of interest embedded in the data series is needed. The idea is that a time
series is a sum of spectrally independent oscillatory modes (see equation 2.11),
called Intrinsic Mode Functions (IMFs) with specific properties [190].

x(n) =
N

∑

i=1

di(n) + r(n) (2.11)
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(a) DWT Filterbank

(b) Frequency domain of a 3 level decomposition

Figure 2.5: A 3 level decomposition using DWT. (a) shows the filterbank
sequence, (b) shows the effect of the filter banks on the frequency domain (From
http: // www. wikipedia. org ).

where di denotes the i-th IMF, i = 1, . . . , N and r(n) is the trend.

Each IMF is a mono-component signal [26], which means that each IMF consists
of one frequency at any time instance (instantaneous frequency). Next to this, the
number of zero crossings and extrema within one IMF differ at most by one. The
local mean in the IMF is approximately zero at all times. The different IMFs are
mutually orthogonal. The different IMFs are calculated one after each other using
a sifting process.

The sifting processes to calculate the different IMFs:

1. Find the locations of all the extrema of the signal x′(n). For initialisation:
x′(n) = x(n).

2. Interpolate (using spline interpolation) between all the minima (resp.
maxima) to obtain the signal envelope passing through the minima, emin(n)
(resp. the maxima emax(n)).

3. Compute the local mean m(n) = (emin(n) + emax(n))/2.

http://www.wikipedia.org
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4. Subtract the mean from the signal to obtain the oscillating signal s(n) =
x′(n) −m(n).

5. If the resulting signal s(n) obeys the stopping criteria (s(n) has zero mean
or the maximum number of iterations is reached), d(n) = s(n) becomes an
IMF and go to step 6, otherwise set x′(n) = s(n) and iterate from step 1.

6. Calculate the residual r(n) = x(n) −m(n) and restart from step 1 with the
residual as starting signal. The algorithm stops when the residual r(n) is a
monotonic signal.

As the algorithm is data driven and calculates local maxima and minima, the
EMD algorithm is very sensitive to noise. Therefore, a more robust, noise-assisted
version of the EMD algorithm, called Ensemble EMD (EEMD) [75] is defined.
The algorithm defines the IMF set for an ensemble of trials. For each trial, a
set of IMFs is obtained by applying EMD to the signal of interest with added
independent, identically distributed white noise. The added noise for each trial
differs, but has an equal standard deviation. The ratio of SD of the the added
noise to the SD of the signal is also called noise parameter (np). The ensembled
set of IMFs is obtained by calculating the mean of the corresponding IMFs from
the decompositions of the different trials.

The np and the number of trials need to be optimised for each application and
are dependent on the amount of noise of the original signal. If the added noise is
high, the signal properties of the original signals are altered, while a too low np
will not be able to cancel out the noise in the original signal. The number of trials
needs to be high enough to cancel out the added noise at each time instant. Being
different from the Fourier decomposition and the wavelet decomposition, EEMD
has no specified basis. Its basis is adaptively produced depending on the signal
itself, which makes not only the decomposition very effective, but also makes the
localization on frequency and time much sharper and most important of all, it
makes more physical sense [190]. On the other hand, unlike the techniques with
a predefined basis which have a straight forward approach, EMD is an iterative
process of selecting local maxima and minima for each IMF. The noise robust
extension of EMD, the EEMD, ensembles the outcome of multiple trials of a
single EMD. The computational time of this technique is much higher compared
to other decomposition techniques. In matlab, a decomposition of a signal (10.000
datapoints, 150 decompositions) with wavelets is 1.1±0.09s while for EEMD (np
= 0.2, number of trials =100), the calculation time is 446±49s.

EMD decomposes a signal into different IMFs using an adaptive basis. This could
lead to problems in the interpretation of the IMFs extracted from different signals
seperately. Standard EMD yields disjointed set of IMFs (corresponding to different
frequency bands) for multiple channels and, hence, makes their comparison
meaningless. The IMFs of the different signals should be matched in terms of
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frequency to facilitate the analysis and the interpretation of the joint IMFs. Tanaka
et al [164, 3] proposed methods to overcome this shortcoming by using complex
Empirical Mode Decomposition. Two signals are fused by making one complex
equivalent where one signals is the real part and the other signal the imaginary part.
These technique create complex IMFs, taking into account the information in both
signals. The complex EMD is a bivariate extension of the standard EMD. A more
generalised approach to multivariate data, where no restriction is imposed on the
number of different data channels, is the recently developed multivariate emperical
mode decomposition [132] (MEMD). The MEMD is a generic multidimensional
extension of the standard EMD. MEMD processess the input signal directly in
higher dimensional spaces, where it generates multiple n-dimensional envelopes.
This results in matched IMFs in terms of frequency of each of the multivariate
input signals.

EMD has already shown its usefulness in a wide range of applications, but
the mathematical basis of the technique and the derivation of the IMFs is still
unclear and the attempts have been mostly exploratory [51]. Ingrid Daubechies
introduced recently the synchrosqueezed wavelet transform [35], that captures the
advantages of EMD, but with a mathematical background. This techniques forms
Intrinsic Mode Type Functions (IMT), with similar properties of IMFs, but with a
different approach in constructing the components. Synchrosqueezing reallocates
the coeffcients resulting from a continuous wavelet transform to get a concentrated
time-frequency picture, from which instantaneous frequency lines can be extracted.
Daubechies showed in [35] on simulations and real life data that synchrosqueezing
an appropriate wavelet transform give a single line on the time-frequency plane,
at the value of the instantaneous frequency of a corresponding IMF. In future,
synchrosqueezing wavelet transform could help in the understanding of EMD or
could be used as a computational more efficient alternative of the EMD.

2.2 Surface Electromyography

2.2.1 Muscle Physiology: Overview

A muscle is the contractile tissue in humans. The most important function is
to produce force and cause motion being locomotion of the organism itself or
movement of the internal organs. Muscles can be divided in three types.

• Skeletal muscle or voluntary muscle. These muscles are also known
as striated (banded) muscles. They are responsible for all the conscious
movements that are controlled by the central nervous system. The muscles
are inhibited subconsciously via a reflex or consciously via the brains through
the nervous system. Their main functionality is the control of the skeleton
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for postural control or movement. The skeletal muscle is attached to bone
via tendons.

• Smooth muscle or unvoluntary muscle. They are found in organs and
structures such as the stomach, intestines, bronchi, uterus, bladder, blood
vessels . . . They tend to enclose a certain volume and work in most situations
by squeezing on that volume. Unlike a skeletal muscle, a smooth muscle is
not under conscious control and is not striated.

• Cardiac muscle is the contracting tissue of the heart. It is striated and
looks like a skeletal muscle, but acts like a smooth muscle: the central
nervous system is not required for contraction, although the central nervous
system has its influence on the operation of the heart muscle (see heart rate
variability).

In this text, we refer to skeletal muscle when muscle is mentioned. When referred
to another muscle type, the name of the type will be mentioned explicitely. A
muscle is built up mainly of two types of tissue: connective tissue and contractile
tissue. The connective tissue cannot actively contract and can be divided into
two groups. A first group connects the muscle to bone and is called tendon. A
muscle has typically two tendons: one is found at the origin, where the muscle
is anchored to and is the point that remains in fixed position during a particular
movement, while the other is connected to the opposite end, the insertion. The
insertion is the point that is moved by the muscle. The second group of connective
tissue is wrapped around the contractile tissue and is called the fascia. Their main
functions are protecting the muscle and holding the contractile tissue together into
a functional unit.

The contractile tissue consists of different layers and an overview is given in figure
2.6. A complete muscle is built up from several fasciculi (bundles of muscle fibers).
A single muscle fiber is called a skeletal muscle cell and consists of nuclei (source
of new proteins and is influenced by muscle fiber strength and anaerobic/aerobic
capacity), mitochondria (responsible for the aerobic metabolism), sarcoplasm
(glycolisis reactions and stores of glycogen). The contractile elements within a
muscle cell are the myofibrils. A single cell consists of many of these myofibrils.
A myofibril has a repeating structure, a sarcomere, which is a complete and
functional unit for contraction. The successive sarcomeres can be distinguished
via the vertical lines (Z-lines) on the myofibril. When looking into detail to one
sarcomere, different regions can be distinguished. The lighter region next to a Z-
lines is called the isotropic or I-band, while the darker region between two Z-lines
is the anisotropic or the A-band. In the middle of the A-band, a smaller less dark
region is visible. This is called the H-zone. These different bands are formed by the
filaments that are responsible for contraction. The two filaments are actin (small
filaments, attached to the Z-lines) and myosin (thick filaments). The latter is the
active filament and is moving when activated along the actin filaments towards
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the Z-lines reducing the H-band. A muscle fiber consists of hundreds of these
sarcomeres one after each other and a shortening of all the subsequent sarcomeres
causes a contraction. When deactived, the binding between the actin and the
myosin disappear and the muscle fibers can be stretched again to the original
length.

Around a muscle fiber, there is a membrane, called the sarcolemma. This
membrane conducts the nerve pulses, in a form of action potentials, rapidly
along the muscle fiber. Within the muscle fiber, t-tubuli connect one side of
the sarcolemma to the other side and enable the action potentials to enter the cell.
These t-tubuli are in close collaboration with the sarcoplasmic reticulum. This
is an extensive internal membrane system that controls the release of Ca2+–ions.
When an action potential is conducted from the sarcolemma into the t-tubuli, the
sarcoplasmic reticulum starts to release Ca2+, causing the contraction to proceed.
When the action potential is over, the sarcoplasmic reticulum captures the Ca2+

from the cell, ending the contraction.

Every muscle fiber is controlled by an α-motor neuron, that receives a stimulus
from the brain by the synaps in the spinal cord. The motor neuron sends the motor
unit action potential to the sarcolemma of the muscle fiber, where it is conducted

Figure 2.6: Overview of the structure of a skeletal muscle [29].
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Figure 2.7: Motor units are controlling the muscle fibers. One muscle has several motor
units and one motor unit can control more muscle fibers [21].

through the muscle fiber to initiate the contraction. Pulse trains towards the
muscle fibers are needed to maintain the contraction. This is called a motor unit
pulse train. Each muscle fiber is controlled by at most one motor unit, while
one motor unit innervates several muscle fibers. This number of muscle fibers,
controlled by one motor neuron, is called the innervation ratio which can vary
considerably, related to the function of the muscle unit. In muscles where the
innervation ratio is low (around 5), it is possible to produce very fine motion like
the muscles of the eye. In contrast, the quadriceps where the main function is
producing a huge amount of force, one motor neuron initiates several thousands
of muscle fibers. A motor neuron with its fibers is called a motor unit. Figure 2.7
shows two motor units to control several muscle fibers.

There are three types of motor units in correspondence with the muscle fibers they
control. Within one motor unit, all of the fibers are of the same type. The type of
fibers depends on their physiology, metabolic characteristics and mechanical and
electrical properties. Here, a short overview of the properties of the different fibers
is given.
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• Type I or slow oxidative. These muscle fibers are known as the red
fibers and are used for sustained activity. These muscle fibers have a high
oxidative capacity. The mitochondria may occupy as much as 40% of the
fiber volume and together with the large amount of myoglobin and blood
capillaries, they are responsible for the red color. Oxygen is used to produce
the energy within the mitochondria revealing the need for myoglobin and
blood capillaries. These muscle fibers are also fatigue resistant so they can
contract for a longer time. The contraction velocity of the muscle fibers is
low. The conduction velocity of the action potential in the motor neuron to
the muscle is fast. A motor neuron of this type can easily be stimulated to
produce an action potential that inhibits a muscle contraction. Type I motor
units have a low innervation ratio and the produced force by one motor unit
is low. These motor units are recruited at low force levels. The recuperation
time of type I muscle fibers is longer than the recuperation time of type II
muscle fibers.

• Type IIa or fast oxidative glycolytic. These muscle fibers have both
oxidative and glycolytic energy production. The properties of these muscle
fibers are a combination of the type I and type IIb properties. As the
fibers have oxidative energy production, the fibers contain mitochondria,
myoglobin and blood capillaries and have a red color. These fibers are more
resistant to fatigue compared to the type IIb fibers, while the contraction
velocity is higher than the type I fibers. The conduction velocity through
the motor neuron of the action potential is very high. The innervation ratio
is rather high and the force produced by a single motor unit is in between
type I and type IIb motor units. These motor units are typically recruited
at moderate force levels.

• Type IIb or fast glycolytic. These muscle fibers are the white fibers (pink
in reality). The energy of these muscle fibers is retrieved from glycolytic
processes that take place in the sarcoplasm, so mitochondria and myoglobin
are almost not present. These muscle fibers contract very fast and have a
large fiber diameter. These muscle fibers are fatigue prone. The conduction
velocity of the action potential in the motor neuron to the muscle is very
fast. A motor neuron of this type has a higher threshold to produce an
action potential that inhibits a muscle contraction. The innervation ratio of
type II muscle fibers is high resulting in a very high force production per
motor unit. These motor units are recruited at high force levels.

2.2.2 Surface Electromyography

One method to quantify the muscle activity is to look at the electrical currents
generated by the muscle fibers to produce muscle force as described in 2.2.1.
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Electromyography (EMG) [104] is a technique for evaluating and recording
this electrical activity. EMG is performed using an instrument called an
electromyograph, to produce a record called an electromyogram. There are two
types of EMG: surface EMG and intramuscular (needle and fine-wire) EMG. To
perform intramuscular EMG, a needle electrode or a needle containing two fine-
wire electrodes is inserted through the skin into the muscle tissue. A trained
professional observes the electrical activity while inserting the electrode to achieve
good localization for optimal information. The insertional activity provides
valuable information about the state of the muscle and its innervating nerve. The
shape, size, and firing frequency of the resulting motor unit potentials can be
monitored. Intramuscular EMG has the advantage that information at motor unit
level can be extracted.

Nevertheless, intramuscular EMG is an invasive technique and not needed in
several applications. Instead, a conductive electrode at the skin may be used
to monitor the general picture of muscle activation, as opposed to the activity of
only a few fibres as observed using a intramuscular EMG. This is called surface
electromyography (sEMG). sEMG is the more common method of measurements,
since it is non-invasive and no specialist is needed to conduct the measurements.
The signal is a differential measurement of two electrodes placed on the same
muscle. Where intramuscular EMG measures the activity of a single motor unit,
sEMG picks up the summation of the electrical activity of all the motor units that
are in its detection range. The information reveals the general muscle state. The
measurement of sEMG depends on a number of factors and the amplitude of the
sEMG signal varies from µV to the low mV [13]. The properties of the signal are
dependent on several factors:

• the timing and intensity of the muscle contraction

• the distance of the electrode from the active muscle

• the properties of the overlying tissue (e.g. thickness of overlying skin and
adipose tissue)

• the electrode and amplifier properties

• the quality of contact between the electrode and the skin

In most applications, only information of the timing and intensity of the muscle
contraction is desired. The other factors only exacerbates the variability in the
sEMG recordings, making the interpretation of results more difficult. Nevertheless,
there are methods to reduce the impact that non-muscular factors have on the
properties of the EMG signal. SENIAM (Surface Electromyography for the Non-
Invasive Assessment of Muscles, [57]), a European consortium of sEMG experts,
developed recommendations for sEMG. The key items, when working with sEMG
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were considered to be sensors, sensor placement procedures, signal processing
and modelling. The SENIAM guidelines for monitoring sEMG of muscles with
contact sensors concerns the skin preparation to reduce the skin resistance, type
and specifications of the electrodes, technical specifications of the equipment etc.
Besides these recommendations, they searched for the optimal electrode position
to retrieve good and stable sEMG. Factors which influence the recording of a
good and stable sEMG are: presence of motor points, muscle tendons and cross-
talk (presence of other active muscles near the sEMG-sensor). For this reason,
SENIAM has developed recommendations for sensor locations on 27 muscles that
can be measured with sEMG. These recommendations include for each muscle a
description of the muscle anatomy, the electrode location and orientation.

As described before, the voltage potential of the sEMG signal detected by the
electrodes strongly depends on several factors other than muscle contractions,
varying between individuals and also over time within an individual. This makes
the use of the amplitude of the signal not useful in group comparisons or to follow
events over a long period of time. The fact that the recorded sEMG amplitude
is never absolute is mainly due to the fact that the impedance varies between
the active muscle fibres and the electrodes and is unknown [62]. Therefore, when
comparing amplitude variables between measurements, normalization is required.
A commonly used technique is normalization of the signal with respect to a force.
Typically, the sEMG is related to a maximal voluntary contraction (MVC) of a
typical movement. SENIAM also described for each muscle a specific movement
that should be used for reference measurement.

High density electromyography (HD-EMG) is a new approach of sEMG signal
processing that came up the last decade. Instead of using two electrodes to
have a differential measurement, an array or a grid of electrodes is used to
retrieve multichannel data. A typical example of a grid is an 8 by 13 grid,
resulting in 104 simultaneously recorded sources. These multichannel data can
be decomposed using multichannel decomposition techniques into channels with
underlying information. A straight-forward approach is to decompose the data
during a contraction into its single motor unit pulse trains [72, 103]. This is
information that could only be retrieved using intramuscular EMG. This approach
combines the advantages of the two previous methods: the information of single
motor units can be found with non-invasive measurements and there is the
information of the total muscle activity which is not present while using the
intramuscular EMG. The HD-EMG is at this moment still in the research phase
and still copes with several drawbacks (high amount of data, computational cost
of the decomposition algorithm), but it has a high potential for several medical
applications.

The data, used in this manuscript, were recorded for the project described in 1.3.2.
One objective of the project was the use of textile integrated capacitive electrodes
to measure sEMG and analyse these signals. This technology is not appropriate
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for use for HD-EMG at this moment. Therefore, despite the big potential of HD-
EMG, the widely used differential sEMG is used. The capacitive electrodes were
not reliable at the beginning of the different measurements, restricting us to the
use the traditional contact electrodes.

2.2.3 Parameters

Time domain

There are several techniques for data processing using the raw sEMG-signals. All
these techniques are performed on the amplitude of the signal. However, in 2.2.1,
a remark was made about the use of the amplitude as a measure for the signals.
SENIAM suggests to solve this problem by measuring the sEMG signals during a
reference measurement, which is the maximal voluntary contraction (MVC) during
a specified movement. The amplitude of the muscle activity during a measurement
can be expressed as a percentage of this reference MVC. SENIAM [57] stipulated
general recommendations for contact electrodes, not only for the positioning and
shape of the electrodes, but they also made a description for basic signal processing
of the sEMG-signals. The most common methods are:

• Analog rectification (RECT): the absolute form of all the values

xRECT = |x| (2.12)

• Average rectified value (ARV): The average value of the rectified signal
in a moving window of 0.25 – 2s in the signal.

xARV (t) =
1

N

N−1
∑

i=0

xRECT (t− i) (2.13)

where N is the number of sEMG samples in the selected window.

• Root Mean Square (RMS): calculation of the root mean square in a
moving window of 0.25 –2s in the signal. RMS is a statistical measure of
the magnitude of a varying quantity. It is especially useful when variates
are positive and negative. The next formula gives the calculation of the
RMS-value

xRMS(t) =

√

√

√

√

1

N

N−1
∑

i=0

x2(t− i) (2.14)

where N is the number of sEMG samples in the selected window.
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• Envelope detector (ENV): low-pass filtering of the rectified signal. This
operation gives an idea of the amplitude of a sEMG-signal.

At present, RMS is the most used technique for interpretation of the amplitude of
sEMG-signals and will be used in the manuscript.

Frequency domain

The common measure to quantify the frequency content of a sEMG signal is
calculating the mean power frequency (MPF) of the power spectral density PSD
(see equation 2.15). To introduce time-dependency, the STFT is used. Ranniger
et al [131] showed that the wavelet analysis method consistently over-estimates the
MPF and that the signal characteristics and shapes of the MPF curves of both
techniques are similar. Therefore, the STFT (window length of 500ms and overlap
of 50%) is used to characterize the MPF due to the reduced complexity of the
calculations.

MPF =

fs/2
∑

n=1

fn · PSD(fn)

fs/2
∑

n=1

PSD(fn)

(2.15)

Activity Level (ACT)

A last parameter which can be derived from sEMG is the activity level of the
muscle. This parameter is an indication of the real muscular effort. An algorithm
to derive this physiological muscle activity (ACT) was described by Spaepen et al
[150, 70], using both amplitude and frequency information. Similarly to RMS
or integrated sEMG-values, this ACT-parameter estimates a sEMG-parameter
proportional with its isometric contraction. In contrast, a lower sensitivity to a
slowly changing baseline and lower dependence on the time interval are advantages
of the ACT-parameter. The recursive algorithm (2.16) to calculate muscular
activity (A) from a series of raw sEMG signals (E) at equally spaced time series
can be summarised as follows: the algorithm computes the activity at time tn+1

from a known activity at time tn and the corresponding raw sEMG values En+1

and En.

A(tn) = p ·A(tn−1) + q ·
√

|E(tn) − E(tn−1)| (2.16)
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Where

A(tn): the muscle activity at time tn+1

A(tn−1): the muscle activity at time tn
p: constant value, equal to 0.9938
q: constant scaling value, equal to 0.05
E(tn): EMG-signal at time tn+1

E(tn−1): EMG-signal at time tn

The activity parameter can be explained as the sum of two terms. First, the
force production in a muscle fibre, the twitch force, does not stop abruptly when
stimulation is terminated, but continues for a limited time. The constant value
p indicates the rate of force decay. P denotes the amount of force following the
previous activity. Secondly, activity obtained from the amount of force resulting
from the new sEMG activity has to be added to the previous term. The force
delivered by a muscle is related to the change in electrical activity (E), which is
measured by sEMG.

2.3 Heart Rate Variability

2.3.1 Introduction

The heart, visualised in Figure 2.8, is divided into two pumps lying side by side,
pumping in phase but distributing blood in series. The right side receives blood
from the body and then propels it at low pressure through the vascular system of
the lungs (the pulmonary circulation) while the left side receives blood from the
lungs and then propels it at high pressure to all other tissues of the body, the so
called systemic circulation. In one cycle all the output of the right part has to
circulate through the lungs but, since the circulations of the different tissues are
arranged in parallel, not all the output of the left heart reaches every single organ.
Normally, there is no direct blood transfer between the two pumps.

Each side of the heart has two chambers: atrium and ventricle. The atrium receives
the blood from the veins and aids its flow into the ventricle. The contraction of
the ventricle propels the blood into the arterius. This phase is called systole. The
filling of the ventricle is called dyastole. The pumps generate pulsatile pressure,
0 to ∼25 mmHg in the right ventricle and 0 to ∼120 mmHg in the left ventricle.
When the body is at rest, diastole occupies two-thirds of the total cycle. The
product of the frequency of pumping (heart rate - HR) and the volume ejected at
each contraction by any one side (stroke volume - SV) is the cardiac output (CO).
Typical values for a resting adult person are 60 – 70 beats per minute, 70 – 80 ml
per beat and 5 – 6 litre per minute, respectively.
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Figure 2.8: Structure of the chambers and valves of the heart. The arrows indicate the
direction of the blood flow.
From http: // www. dr-sanderson. org/ images/ heart. gif

Cardiac muscle has a myogenic rhythm, which means that it has the ability to
contract rhythmically without nervous input. The action potential for each heart
beat is generated by a pacemaker in the right atrium and transmitted through
the heart along specialised conducting pathways. Pacemaker cells have a resting
membrane potential which slowly and spontaneously depolarize to a threshold at
which an action potential is initiated. Cardiac action potentials are typically of
long duration (200 – 400 ms). There is a considerable overlap in time between
the cardiac action potential and the contraction it initiates so that, in contrast to
skeletal muscles, two contractions can not summate.

The synchronised depolarization spreading through the heart causes currents in
the extracellular fluid that establishes field potentials over the whole body. These
potential differences can be detected by electrodes placed on the body’s surface.
The signal (about ∆ 1 mV) has to be amplified and the record produced is called
the electrocardiogram (ECG).

The pattern of the ECG varies depending on the position of the electrodes but
certain features are always present. A typical ECG of one heart beat is shown in
Figure 2.9. The P wave is produced by the spread of electrical activity during atrial
depolarization. The QRS complex is produced by ventrical depolarization and the
T wave by ventrical repolarization. When no depolarization or repolarization is
occuring, there is no potential difference in the ECG leading to the isoelectric

http://www.dr-sanderson.org/images/heart.gif
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line. Atrial repolarization does not produce any detectable wave because it occurs
during the much larger QRS complex. Since ventricular repolarization is less well
synchronised than ventricular depolarization, the T wave is longer in duration
but smaller in amplitude than the QRS complex. Depending on the electrode
position, the QRS complex may have one, two or sometimes three components.
If after the P wave the first deflection from the isoelectric line is negative (by
convention downwards), it is called a Q wave; if positive, it is called an R wave
and if the next deflection falls below the isoelectric line, it is called an S wave.
The PQ or PR interval is the time required for excitation to spread through the
atria, atrioventricular (AV) node and bundle of His while the QS interval is the
required time of excitation to spread through the ventricles. The duration of the
ventricular and atrial action potentials is therefore given by respectively the QT
and PS interval.

The pacemaker firing rate, and consequently heart rate, is influenced by the
nervous system. The nervous system is a network of cells specialised for the
reception, integration and transmission of information. It comprises on one hand
the central nervous system (CNS) and on the other hand sensory and motor nerve
fibers that enter and leave the CNS or are completely outside the CNS (peripheral
nervous system or PNS). The CNS comprises the brain lying within the skull and
the spinal cord lying within the vertebral column. The PNS is that portion of
the nervous system that lies outside the spinal cord and brain. It comprises both
the somatic and the autonomic divisions. The somatic division contains all the
peripheral pathways responsible for communication with the environment and the
control of skeletal muscle. The autonomic nervous system (ANS) comprises all the
pathways from controlling centres in the brain and spinal cord to effector organs
other than skeletal muscle. As heart rate variability is linked with autonomic
nervous modulation, we will focus on the ANS. The actions of the peripheral
autonomic nervous system are normally involuntary and are directed to the control
of individual organ function and to homeostasis. The ANS is often regarded as the
’solely motor’ in function with fibres going to cardiac muscle, smooth muscles and
glands. Sensory information comes from visceral and somatic afferent inputs. The
peripheral autonomic nervous system is anatomically divided into the sympathetic
and parasympathic system. The latter is often also called vagal system. Many
tissues are innervated by both systems, having opposing effects. The heart rate is
increased by sympathetic and decreased by parasympathetic nerve activity. The
autonomic nervous system also influences the conduction velocity of the action
potentials through the heart and the duration of the cardiac action potential.

The focus of this work is on the R peaks as the distance between two consecutive
R peaks indicates the time between two successive heart beats. Based on the RR
intervals, we can extract different parameters to analyze the variation between the
heart beats and link these parameters to retrieve information of the autonomic
nervous system.
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Figure 2.9: The basic pattern of electrical activity across the heart. A typical ECG of
one heart beat with P wave, QRS complex and T wave. From [5].

Figure 2.10: Block diagram of the Pan-Tompkins algorithm for QRS peak detection.

2.3.2 Processing

Peak detection: Pan-Tompkins

HRV analysis is based on the fluctuations in RR intervals. This implies the first
step in processing the ECG is to determine the R-peaks of the QRS-complexes.
Pan and Tompkins [120] proposed a real-time QRS detection algorithm based on
analysis of the slope, amplitude and width of the QRS complexes. The algorithm
includes a series of filters and methods that perform low-pass, high-pass, derivative,
squaring, integration, adaptive thresholding and search procedures. Figure 2.10
illustrates the steps of the algorithm in schematic form.
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Figure 2.11: Example of wrong peak detections by the Pan-Tompkins algorithm. The
result after preprocessing is given on top and shows that the wrong intervals were
concatenated correctly [187].

Data preprocessing

The Pan-Tompkins algorithm has a good performance in general. Nevertheless,
errors will be introduced via wrong peak detections and missed peaks. An example
of a data fragment with wrong peak detections is shown in Figure 2.11. Therefore,
an extra preprocessing of the data is unevitable. Missed beats can be replaced
via interpolation while wrong peak detections can be discarded if needed, based
on information of the previous beats. An example can be seen on top of Figure
2.11. Moreover, also premature supraventricular and ventricular beats need to be
removed as HRV can only reliably extract information from normal sinus rhythms.
To exclude these typical beats, filters are available with omission of one subsequent
beat and linear interpolation of the corresponding periods. This way, type A errors
(QRS detected prematurely when in fact a sinus conducted wave has not occurred)
and type B errors (failing to detect an R wave that is present) could be largely
avoided [83, 69]. A 20%-filter [86] was used, meaning that every RR-interval that
differ more than 20% from the previous one, is replaced by an interpolated value,
defined via spline interpolation over the 5 previous and 5 next intervals. The
assumption that underlies this correction is that the RR interval does not oscillate
abruptly from the mean value and that the use of the interpolated value will
introduce less high frequency noise.

Secondly, a trend removal algorithm is applied that removes any linear trend in the
signal. This has no influence on regular stationary baseline data, but it prevents
artificial low frequency power. After the preprocessing steps, the corrected RR
intervals are called normal-to-normal intervals (NN).

Finally, a file containing the consecutive NN intervals is exported for later
processing. Such an NN interval time series, illustrated in Figure 2.12, is called a
tachogram and is the signal on which the different HRV techniques will be applied.
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Figure 2.12: Illustration how to derive the tachogram (RR interval time series) from
the ECG signal. First, R peaks are detected (see Figure 2.9) and the time between two
successive R peaks, which is called the RR interval (RRI), is calculated and expressed in
milliseconds as indicated on top. Then, all these RR intervals become the samples of a
new signal, called tachogram or RR interval time series shown at the bottom, where the
RR intervals (ms) are plotted on the Y axis versus the time (s) at which the heart beat
occurs on the X axis [170].

2.3.3 Heart Rate Variability Parameters

The linear time and frequency domain techniques for HRV were standardised in
a report of the Task Force of the European Society of Cardiology and the North
American Society of Pacing ans Electrophysiology [165].

Time domain analysis

Time domain analyses are simple techniques, most of them are based on statistical
properties of the tachogram:

• Mean NN (ms) is the average duration of the RR intervals over the defined
period. This measure is inversely correlated to the widely used heart rate in
beats per minute.

MeanHR(bpm) = 60 ∗ 1000/MeanNN(ms) (2.17)

• diffNN is the difference between the longest and shortest NN interval

• SDNN (ms) is the standard deviation of the NN intervals and equals
the square root of variance. SDNN reflects all the cyclic components
responsible for variability in the period of recording. It correlates well with
total power in the frequency domain since variance equals total spectral
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power. In many studies, SDNN is calculated over a 24h period and thus
encompasses both short-term high frequency variations, as well as the lowest
frequency components seen in a 24h period. As the period of monitoring
decreases, SDNN estimates shorter and shorter cycle lengths. It should
also be noted that the total variance of HRV increases with the length of
analyzed recording [142]. Thus, on arbitrarily selected ECGs, SDNN is not
a well defined statistical quantity because of its dependence on the length of
recording period. Consequently, in practice, it is inappropriate to compare
SDNN measures obtained from recordings of different durations. However,
durations of the recordings used to determine SDNN values (and similarly
other HRV measures) should be standardised. 5-minute recordings for short-
term and nominal 24h for long-term recordings seem to be appropriate
options.

• pNN50 (%) is the percentage of successive NN intervals differing more than
50 ms in length from the previous interval.

• rMSSD (ms) is the square root of the mean of the squares of differences
in length between adjacent intervals. The RMSSD gives an estimate of the
short-term component of HRV.

• SDSD the standard deviation of successive differences.

The last three measures are highly intercorrelated and relate to high frequency
spectral power in the frequency domain. The rMSSD is preferable to the pNN50
because it has better statistical properties [165]. This activity is linked with the
parasympathetic activity of the nervous system [165].

Frequency domain analysis

Various spectral methods for the analysis of the tachogram have been applied.
Power spectral density (PSD) analysis provides the basic information of how power,
and therefore the variance, distributes as a function of frequency. Independent of
the method employed, only an estimate of the true PSD of the signals can be
obtained by proper mathematical algorithms.

Methods for the calculation of PSD may be generally classified as nonparametric
and parametric. In most instances, both methods provide comparable results. The
advantages of the nonparametric methods are: (a) the simplicity of the algorithm
employed (Fast Fourier Transform - FFT - in most of the cases) and (b) the high
processing speed, whilst the advantages of parametric methods are: (a) smoother
spectral components which can be distinguished independently of preselected
frequency bands, (b) easy post-processing of the spectrum with an automatic
calculation of low and high frequency power components and easy identification of
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the central frequency of each component, and (c) an accurate estimation of PSD
even on a small number of samples on which the signal is supposed to maintain
stationarity. The basic disadvantage of parametric methods is the need to verify
the suitability of the chosen model and its complexity (the order of the model).

One has to distinguish between short-term and long-term recordings. During short-
term recordings, three main spectral bands are distinguished in a spectrum: an
ultra-low frequency component (ULF ) below 0.003 Hz, very low frequency (VLF )
(from 0.003 to 0.04 Hz), low frequency (LF ) from 0.04 to 0.15 Hz, and high
frequency (HF ) fluctuations from 0.15 to 0.4 Hz (Figure 2.13). The distribution
of the power and the central frequency of LF and HF are not fixed but may vary
in relation to changes in autonomic modulations of the heart period. In each
frequency band, the power is calculated as the area under the PSD curve between
the corresponding lower and upper bound. The total power (TP) is defined as the
power in the frequency band going from 0 Hz to 1 Hz. Calculation of ULF, VLF,
LF and HF powers are usually made in absolute values of power (ms2), but LF
and HF may also be measured in normalised units (n.u.):

LF (n.u.) =
LF

TP − V LF
, HF (n.u.) =

HF

TP − V LF
(2.18)

The representation of LF and HF in n.u. emphasizes the controlled and balanced
behaviour of the two branches of the autonomic nervous system. Moreover,
normalization tends to minimize the effect on the values of LF and HF components
of the changes in total power. Another measure is LF/HF, calculated as the ratio
of the power in LF and HF band.

Vagal activity is the major contributor to the HF component. Disagreement
exists concerning the LF component. While some studies suggest that LF,
when expressed in normalised units, is a quantitative marker for sympathetic
modulations, most studies view LF as reflecting both sympathetic and vagal
activity. Consequently, the LF/HF ratio is considered to mirror mainly
sympathovagal balance. The physiological explanation of the VLF component is
much less defined and the existence of a specific physiological process attributable
to these heart period changes might even be questioned. The non-harmonic
component which does not have coherent properties and which is affected by
algorithms of baseline or trend removal is commonly accepted as a major
constituent of VLF. Thus VLF assessed from ≤5 minute recordings is a dubious
measure and should be avoided when interpreting the PSD of short-term ECGs.
The ULF component is discussed when 24h recordings are analyzed. This
parameter reveals information of the circadian variations of the heart rate.
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Figure 2.13: Example of an estimate of power spectral density obtained from the entire
24h interval of a long-term Holter recording. The different frequency bands are clearly
indicated: ultra-low frequency component (ULF), very low frequency component (VLF),
low frequency component (LF) and high frequency component (HF). From [165].

Time-frequency analysis

Because of the problem of stationarity, frequency domain HRV parameters are not
reliable in case of quick changes in heart rate or its autonomic modulation. The
spectrum essentially tells us which frequencies are contained in the signal, as well
as their corresponding amplitudes and phases, but does not tell us at which times
these frequencies occur. Therefore, time-frequency representation (TFR) can be
made from the signal as described in section 2.1.2. The Morlet wavelet is selected
as mother wavelet as literature showed that this is an appropriate function to study
HRV [90]. From this TFR, a time course of spectral parameters can be extracted.
The spectral bands are chosen similarly to the Task Force description [165], so as
to keep the physiological interpretation of the results: LF band (0.04 - 0.15 Hz)
and HF band (0.15 - 0.40 Hz). The instantaneous frequency of a signal, calculated
as the derivative of the phase of its analytical signal, often produces results that,
in some ways, may seem paradoxical [127], and which, in any case, make their
physical interpretation difficult. This drawback can be avoided by defining the
instantaneous frequency as the mean frequency of the spectrum at each instant
[25]. The spectrum is obtained as a section of the time-frequency distribution at
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this instant.

fs(t) =

ne
∑

n=nb

fn · TFR(t, fn)

ne
∑

n=nb

TFR(t, fn)

(2.19)

with nb, ne respectively the beginning and end frequency of a selected frequency
band and fn the frequency representation of the scales a. Each mother wavelet
has a central frequency, which can be modified by rescaling the mother wavelet.
The scale a is thus directly related to a frequency. The instantaneous frequency
is calculated in the high frequency band (fHF ), while the analysis in the low
frequency band is neglected because no agreement exists on physiological meaning
of this frequency. Analogously, in the two frequency bands the power can
be calculated by integrating the spectrogram, expressed in absolute values or
normalised units (respectively eLF and eHF for the power in the low frequency
and the high frequency band).

es(t) =

ne
∑

n=nb

fn · TFR2(t, fn) (2.20)

Non-Linear HRV parameters

Next to the time and frequency measures, several non linear techniques are used
to describe the dynamics of the cardiovascular system. These methods for non-
linear dynamics enable other insight in HRV. They allow the quantification of the
complexity and the chaos of processes, induced by the biological system. Here, a
short overview of the methods used in this manuscript is given, a more extensive
explanation about the different techniques is given in [170].

• 1/f slope. The 1/f slope [88] is the slope of the linear regression of
the log(PSD)to log(frequency) relationshop in the frequencyband of 10−4

till 10−2 Hz. This measure is an indication of the long term scaling
characteristics of the signal. A value of -1 indicates a young, healthy person.

• Detrended Fluctuation Analysis (DFA). DFA [122] quantifies the
presence or absence of fractal-like properties in non-stationary time series.
In HRV, short term DFA α1 (by agreement from 4 to 11 heartbeats) and
long term DFA α2 scaling factors are calculated. The long term and short
term self-similarity of the signal is characterised by these scaling factors.
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• Sample Entropy (SampEn). The sample entropy [134] is an estimation of
the entropy as measure for the complexity of the system. SampEn quantifies
the conditional probability that subseries of length m that match pointwise
within a tolerance r, match also at the next point. In this study, the values
of m = 2 and r = 0.2 are used. The higher the values of SampEn the more
complex a time series is [178].

• Fractal Dimension (FD). The FD [84] measures the irregularity of the
fractals within the time series and is a measure for the complexity. To
estimate the FD, the tachogram is divided in squares with length r and the
number of squares, needed to cover the complete tachogram are calculated.
Several methods exist to calculate the FD. Here, the box-counting method
is used.

• Lyapunov Exponent (LF). LE [124] is used to discriminate between
chaotic dynamics and periodic signals. It is a measure of the rate at which the
trajectories separate one from the other. The trajectories of chaotic signals
in phase space follow typical patterns. Closely spaced trajectories converge
and diverge exponentially, relative to each other. The LE is an indication
of the predictability of a time series. A positive value of LE indicates the
presence of chaos in the time series.

• Numerical Noise Titration. Numerical Noise Titration [126] is a better
alternative for the Lyapunov exponent (LE), which is a measure of the
exponential divergence of nearby states. LE fails to specifically distinguish
chaos from noise and cannot detect chaos reliably unless the data series are
inordinately lengthy and virtually free of noise, but those requirements are
difficult mostly even impossible to fulfill for most empirical data. To apply
numerical noise titration, the noise limit NL is calculated. NL estimates a
linear and a nonlinear model to model the data. If the linear model is a better
estimation of the data, it can be concluded that the data are not chaotic and
the NL equals 0. The non linear model indicates that the data are both
chaotic and non chaotic. After adding noise, both models are calculated. As
long as the nonlinear model is a better predictor, extra noise is added. The
amount of noise added is the noise limit (NL). NL > 0 indicates the presence
of chaos, and the value of NL gives an estimate of relative chaotic intensity.
Conversely, if NL = 0, then the time series may be non-chaotic or the chaotic
component is already neutralised by the background noise. Therefore, the
condition NL > 0 provides a simple sufficient test for chaos.

Two measures to assess the changes in the chaos level can be extracted. The
detection rate (NLdr) is defined as the percentage of all time segments in
which nonlinearity is detected. This measure gauges the mean cardiac chaos
level. NLmean is calculated as the average of all the NL’s excluding the
segment with NL = 0. It estiamtes the chaos level directly and can be used
as a highly time-resolved measure.
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2.4 Near-Infrared Spectroscopy

Near Infrared Spectroscopy (NIRS) is a technique that uses light in the near
infrared spectrum for noninvasively clinical monitoring of tissue oxygenation. The
method is based on the property that biological tissue is relative transparent to
light in the near-infrared part of the light spectrum i.e. 700 to 1000 nm. As
light photons can penetrate several centimetres into the tissue, some of the optical
properties of the tissue can be measured noninvasively ([80]). The signal detection
is based on levels of light directed into the tissue through the skin and picked up
by the detector after the light has traveled through tissue ([99]). The light will be
attenuated due to a combination of absorption by chromophores and scattering
through the inhomogeneous medium (skin, adipose tissue, muscle). In human
tissue, three main chromophores that absorb light causing the light attenuation
are oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HbR) in the red blood cells
and the oxidized form of Cytochrome oxidase (Cytox) in the cell mitochondrial
membrane. Attenuation of transmitted light in the tissue due to other causes
can be assumed to be constant over the period of monitoring. Consequently,
any change observed in attenuation is due to a change in the concentration of
the chromophore. The purpose of NIRS is to quantify the concentrations of these
chromophores in tissue ([41, 112]). Light attenuation increases as the light scatters
away from the original linear path. The scattering rate is unknown due to the
inhomogeneous tissue and the unknown deviation from the linear path. This
deviation is expressed in differential pathlength factor (DPF) and describes the
actual distance traveled by the light through tissue ([117]). However, as most
commercially available NIRS systems can not measure the actual pathlength, DPF
is usually set to a fixed value in clinical studies. For the studies described in this
manuscript, the DPF is set to a constant value of 4.39 ([44, 108]). Figure 2.14 shows
the principle of the NIRS. Although the absorption is relatively low in biological
tissue, it is still difficult for NIR light to penetrate more than a few centimeter.
Due to the high scattering, however, a detector, placed a few centimeters from
the source on the same surface, can collect light that has passed through the
tissue beneath the optodes. Assuming homogeneous tissue, the sample volume
corresponds to a banana-shaped volume beneath the optodes [20]. The assumption
here is that light attenuation arises only due to changing concentrations of
chromophores in tissue, because DPF and other factors attenuating the light
can be considered constant during measurement at the same position in tissue.
The Modified Beer-Lambert equation (equation 2.21) [30] makes it possible to
convert changes in absorption and attenuation to changes in concentration of the
chromophores, recognizing that the distance between the optodes (light source to
detector) is constant and known.

A = log
I0
I

= α · C · d ·B +G (2.21)
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Where

A = attenuation
I0 = incident light intensity
I = emergent light intensity
α = optical characteristics of a compound at a given wavelength
C = concentration of the absorbing compound
d = distance between optodes
B = differential pathlength factor (DPF)
G = additive geometry-dependent term reflecting scattering loss

Here, the additive geometry-dependent term G reflecting scattering is an unknown
but constant factor in time. To avoid this factor G another equation is used,
calculating the difference between two moments in time.

We have the attenuation A at two time instants.

A1 = log
I0
I

= α · C1 · d ·B +G (2.22)

A2 = log
I0
I

= α · C2 · d ·B +G (2.23)

Figure 2.14: Schematic representation of the sample volume (light bundle) when source
and detector are placed on the same surface. The incoming light (source) has intensity
I0, the emerging light (detector) is attenuated and has intensity I (From [108]).
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When taking the difference in attenuation between these two measurements, the
unknown factor G disappears.

(A2 −A1) = log
I0
I

= α · (C2 − C1) · d ·B (2.24)

A disadvantage is that NIRS only measures concentration changes of the
chromophores ([112]). The spectrum of HbO2 and HbR is given in figure 2.15. The
analysis of the light in the tissue in selected wavelengths in the range of interest can
give a qualitative assessment of changes in the tissue concentration HbO2 and HbR.
The largest differences in the spectrum between HbO2 and HbR are in the range
of 600 - 1000nm. The more wavelengths that are measured in the equipment,
the better the assessment of the changes in concentration. These changes in
tissue oxygenation take place at the level of small blood vessels, capillaries and
intracellular sites of oxygen uptake ([97]). The NIRS measurements are able to
display on real-time basis the changes in HbR (∆HbR) and in HbO2 (∆HbO2)
and the difference in total haemoglobin concentration (∆Hbt) can be determined
by summing ∆HbR and ∆HbO2. Changes in Cytox concentration (∆Cytox) are a
relative rate of cellular oxygenation. The total blood volume can be estimated by
the total haemoglobin concentration (∆Hbt). The blood flow is calculated from
the changes in O2 saturation and HbO2 recorded over a small epoch. A good
correlation between blood flow and volume has been notified in previous work
([112, 117]).

Figure 2.15: The spectrum of HbR and HbO2. (From
http: // omlc. ogi. edu/ spectra/ hemoglobin/ moaveni. gif )

http://omlc.ogi.edu/spectra/hemoglobin/moaveni.gif
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Spatially resolved spectroscopy (SRS) uses the diffusion approximation in addition
to the modified Beer-Lambert Law. This method describes the propagation of
photons in a highly scattering medium such as living tissue [79]. This equation is
given in 2.25.

1

c

δφ(r, t)

t
= ∇[D(r)∇φ(r, t)] − µa(r)φ(r, t) + S(r, t) (2.25)

Where

φ(r, t) = diffuse photon fluence rate at position r and time t
c = speed of light in the tissue
S(t) = photon source
D(r) = diffusion coefficient: D(r) = (3(µa + µs))

−1

µa = absorption coefficient
µs = scattering coefficient

For a semi-infinite, homogeneous half-space geometry, it can be shown that the
solution of equation 2.25 for an impulse is given by [108, 112]:

R(ρ, t) =
1

4πDC

1

µs
t−5/2exp(−µact)exp(

−(ρ2 + µ2
s)

4Dct
) (2.26)

Figure 2.16: Detector of spatially resoveld spectroscopy [112].
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With R(ρ, t) = the intensity of the reflected light at a distance ρ and time t.

Patterson et al [121] proposed that the effective attenuation coefficient of tissue
can be measured using non-time resolved measurements by measuring the spatial
variation of the intensity of retroreflected light as a function of the distance between
between the light source and detector ρ. They showed that the scatter loss becomes
homogenous if ρ is large enough (ρ >3). From this distance, the attenuation
coefficient can be estimated as (3µaµs)

1/2. The detector consist of three sensors
at varying distances from a light source (see figure 2.16). At the point of the
detector, the differences in intensity measured at the three different sensors can
be interpreted as differences in absorption loss and the relationship can be noted
as δA/δρ, where A is the surface of one detector. Any difference in intensity
measured by the three detectors gives an indication of the variation in absorption.
This enables the measurement of the dynamic balance between O2 supply and
O2 consumption in tissue capillaries, arterioles and venules which is impossible
in larger blood vessels because the light would be absorbed fully by the high
haemoglobin concentration. The tissue oxygenation index (TOI) is measured as
a local change in absorption in function of distance between source and detector.
The TOI can be calculated according to equation 2.27.

TOI(%) =
k ·HbO2

k ·HbO2 + k ·HbR
(2.27)

Where

HbO2 = concentration in oxydised haemoglobin
HbR = concentration in reduced haemoglobin
k = constant scattering distribution

The main advantage of the tissue oxygenation index, TOI, compared to the HbO2,
HbT and HbR separately is that an absolute value is calculated. This enables
the use of this parameter for group analyses without the need of a reference
measurement.

For the measurements in this manuscript, the NIRO 300 (Hamamatsu Photonics
K.K., Tokyo, Japan) is used (figure 2.17). NIRO 300 uses spatially resolved
spectroscopy (SRS) with four different laser diodes emitting near-infrared light
at four wavelengths, i.e. 775, 810, 850, and 910 into tissue. The laser diodes
sequentially irradiate the skin through the same emitter which is made from a
fiber bundle. The pulse width of each laser diode is about 100ns and the repetition
rate is 2 kHz. The total average power of the irradiation to the skin is about 1
mW and classified as laser Class 1. Three closely spaced photodiodes measure the
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attenuation as a function of source- detector distance. The different parameters
that are extracted from a measurement with the NIRO 300 are the ∆HbO2, ∆HbR,
∆HbT and TOI.

2.5 Stress

Everybody in todays society knows the phenomenon stress and lot of people have
their own opinion on stress. But the real description of stress is vague as several
definitions of stress exist, pointing to the situation, the feeling, the initiation and
so on. In this text, we use a more fundamental and general definition described in
the book of Van Houdenhove [74]: Stress is a set of physiological and psychological
mechanisms that initiates because of real or imaginative threats to our physical or
psychological balance. These threats are called stressors and can have a large
variety in origin both physical as mental: lack of sleep, working under time
pressure, coping with an annoying boss, performing a difficult task, shooting the
decisive penalty in the final of the world championship, facing a bear in prehistoric
ages . . . All these stressors lead to changes in the body that make people feel
stressed. Therefore, stress is called a psychophysiological phenomenon. Hans Selye
[144], a physiologist, is generally accepted to be the pioneer of stress. He discovered
the general adaptation syndrome (GAS) during an endocrinological experiment in
which he injected mice with extracts of various organs. At first, he believed he
discovered a new hormone, but was proved wrong when every irritating substance
he injected produced the same symptoms. This, paired with his observation that
people with different diseases exhibit similar symptoms, led to his description of

Figure 2.17: NIRO 300.
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the effects of noxious agents. He later coined the term stress to stress, which
has been accepted as the general term in various other languages. The work of
Selye was greatly influenced by Walter B. Cannon, who had focused on the role of
the sympathetic nervous system in adaptation called it the fight-or-flight response.
When an animal is threatened by a predator, several changes in the physiology
of the animal occur to bring the animal in a state of arousel where its body is
prepared to attack or fly from the predator. A nice example is clapping in your
hands when seeing a cat. The cat freezes immediately, moves down, open the eyes
and after a while the cat runs away or attacks. Later, this fight-or-flight reaction
was called the acute stress response in the work of Selye.

The body reacts to the different stressors with the complex stress reaction, but
this reaction still works nowadays in a similar way as in the prehistory [74]. The
appearance of a threat inhibits changes in the physiology and behaviour of the body
with the only focus on survival. Some of these changes are an increase in heart rate,
blood pressure and respiration; an increase in muscle tension that is responsible for
fighting or flying. Other mechanisms that are not necessary for direct survival are
reduced like sleep, pain, reproduction, sex . . . The mood is anxious and nervous
so the body remains focused on survival. All these processes are controlled by
the brain [74]. When the threatfull situation is identified (by the amygdala, the
cortex and the hippocampus), the locus coeruleus or the sympathetic system and
the hypothalamus-pituitary-adrenocortical axis (HPA-axis) are activitated, while
the prefrontal cortex is disabled. The sympathetic system becomes more activated
via the locus coeruleus (situated in the brain stem), resulting in the secretion of
the neurotransmitter noradrenaline. The activation of the sympathetic system
innervates the production of adrenalin in the adrenal medulla. In addition, the
parasympathetic system is shut down. The production of adrenalin is responsible
for the increase in heart rate, respiration rate and vasoconstriction. From the
initial threat on, the hypothalamus is releasing the corticotropin releasing hormone
(CRH) to maintain the acute stress reaction (coping). It also activates the pituitary
that activates the adrenal cortex via the adrenocorticotropic hormone (ACTH)
to produce cortisol. The prefrontal cortex is shut down. This brain region
is responsible for planning complex cognitive behaviors, personality expression,
decision making and moderating correct social behavior. The basic activity of this
brain region is considered to be orchestration of thoughts and actions in accordance
with internal goals.

As described earlier, the stress response is a natural protection mechanism of
the body to external danger and is in se not bad. Even more, in certain
circumstances, stress enhances the functionality of an individual (both physical
and mental). Selye introduced the term eustress for this phenomenon [145]. The
opposite is called distress. A stress situation has a clear impact on the body
and results in an extra load of the metabolism (See figure 2.18). Long term
exposure to stress could load to exhaustion of several systems in the body. McEwen
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Figure 2.18: The Stress Response and Development of Allostatic Load. The perception
of stress is influenced by ones experiences, genetics, and behavior. When the brain
perceives an experience as stressful, physiologic and behavioral responses are initiated,
leading to allostasis and adaptation. Over time, allostatic load can accumulate, and the
overexposure to mediators of neural, endocrine, and immune stress can have adverse
effects on various organ systems, leading to disease. (From [100], with permission of the
New England Journal of Medicine. ©[1998] Massachusetts Medical Society. All rights
reserved.)

[101] introduced the word allostatic load for this as a failure of the allostasis.
Allostasis [153] is the ability from the body to adapt to external situations and
cope with the environment(awake, asleep . . . ). The top plot of figure 2.19 shows
normal allostasis, where a response is initiated by a stressor, sustained for an
appropriate interval and is turned off when the stressor disappears. However, if the
deactivation is inefficient, there is overexposure to stress hormones. Long term over
exposure (months to years) to these hormones can result in allostatic load and its
pathophysiologic consequences. The first type is the frequent stress. The body can
cope with occasional stressors, but is not adapted to face long term periods with
stressors (for example long periods of elevate blood pressure increases the risk of
myocardial infarction). The second type refers to the lack of adaptation of the body
to cope with repeated stressors of the same type. The learning process to similar
external stimuli (habituation) is absent. A third mechanism that leads to allostatic
load is the failure of the body to shut down the allostatic responses after the stress
is terminated. In normal circumstances, the increase of stress hormones in the
body is answered with negative feedback to the mediators to control the stress
mechanism and to recover the body once the stressor disappears. This feedback
mechanism fails to work for some people when the stress mechanism is exhausted
due to long term exposure. These above described types of allostatic load are
all three related to the stress system in overdrive. The opposite, when the stress
system is in underdrive, is the fourth type of allostatic load. The reaction of some
allostatic processes to a new stressor is inadequate, resulting in a compensatory
increase of other allostatic processes. This is also responsible for the exhaustion
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Figure 2.19: Different types of allostatic load. The top panel illustrates the normal
allostatic response, in which a response is initiated by a stressor, sustained for an
appropriate interval, and then turned off. The remaining panels illustrate four conditions
that lead to allostatic load: repeated hits from multiple stressors; lack of adaptation;
prolonged response due to delayed shutdown; and inadequate response that leads to
compensatory hyperactivity of other mediators (From [100], with permission of the New
England Journal of Medicine. ©[1998] Massachusetts Medical Society. All rights
reserved.)

of several physiological processes. Underactivitation of the HPA axis leads to a
shortage of cortisol in the blood [74]. This shortage has a direct influence in the
malfunction of the immune function of the body with its direct consequences to
health.
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Allostatic load has a huge impact on the equilibrium of the human body. This
results in numerous diseases that are related with long exposure to stressors.
The most common stress diseases are coronary diseases (elevated blood pressure,
myocardiac failure), type 2 diabetes, obesitas, depression, fybromyalgia, chronic
fatigue syndrome, burn-out.

2.6 Conclusion

In this chapter, the most important methodology is introduced to understand this
manuscript. In a first section, the mathematics that are used in this manuscript are
described. The next sections introduce the physiological and technical background
of the physiological signals (muscle activity, variability of the heart and the
oxygenation of tissue) that are used within this manuscript. Finally, Stress, which
is the basis of the collected data and the analysis used in this manuscript is
introduced. A summary of the physiological impact of mental stress is described.





Chapter 3

Surface Electromyography:
processing and analysis applied
to stress monitoring

This chapter gives an overview of the signal processing and the analysis of the
sEMG signals. In a first section 3.2, two series of stress experiments are described
that are used within this manuscript. Each stress experiment consisted of different
tasks where a mental stress was induced on the subjects. This mental task was
combined with and without an extra physical load. In a next section 3.3, the
removal of ECG interference in sEMG signals of the shoulder girdle is described.
This ECG interference signal is the most important noise influence in these sEMG
signals and need to be removed for reliable analysis. A single channel approach of
independent component analysis was elaborated and applied on the data to remove
the ECG interference signal. These techniques were expanded to situations where a
simultaneous ECG measurement is available. The results of these techniques were
compared with template subtraction, which is the standard technique to remove
the interference signal. During the analysis of the sEMG signal of the trapezius
muscle during the stress assessment tasks, a specific pattern of muscle activity
could be identified which is not published earlier in this situation using this type of
electrodes. This muscle activity is a continuous activation of single type I motor
unit. A spike train detection algorithm is modified to detect this type of activity.
This observation and detection algorithm is described in section 3.4. In the next
section (3.5), an easy-to-use algorithm, based on the frequency properties of the
sEMG signals, to estimate whether a muscle is active or in rest is presented. This
algorithm was used to estimate the baseline of the different sEMG signals during
the stress experiments. The final section of this section (3.6) describes the most
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important results of the analysis of the different sEMG parameters during the two
stressexperiments tests. The effect of the mental task on the sEMG parameters is
discussed, next to the analysis of muscle fatigue during the different tasks. The
additional effect on the muscle activity from the mental load on a physical load..

3.1 Introduction

The use of surface Electromyography is of importance in the battle against
musculoskeletal disorders. More specific, the influence of mental stress on
spontaneous activation of the muscle in the shoulder girdle (and the trapezius
muscle more specific), is a main topic in research [67, 82, 73]. The prolonged
activation of the muscle fibers in the shoulder area could lead to overload of the
fibers and in a further stadium to MSD.

In laboratory studies, researchers found that mental workload increases trapezius
muscle activity [6, 17, 50, 89, 92, 96, 181]. Stressful circumstances, such as verbal
provocation during performance and time pressure also increase muscle activity
[180]. However, several researchers have reported considerable inter-individual
differences in muscle activity response to a stressor [186, 98, 115, 173]. EMG
activity does not always correlate with other physiological and psychological
parameters [89, 82, 135]. This proves the necessity of the monitoring and the
analysis of the sEMG in the battle against MSD.

Two series of stress experiments were conducted where several muscles in the
shoulder area (trapezius, deltoideus and infraspinatus muscle) were monitored.
The test subjects carried out different tasks, imposing physical, mental and a
combination of physical and mental stimuli. The reaction of the muscles on these
different tasks was investigated. So far, researchers have mainly investigated the
amplitude of the EMG signals via the Root Mean Square. These results are
described shortly in a paragraph. But in this study, we focus also on possible
patterns in the sEMG signals to possibly discriminate between activity caused by
the physical stimuli and the mental stimuli.

To increase the performance of the analysis, the most important artefacts need
to be removed. When looking at the sEMG signals in the shoulder area, the
interfernce of the electrophysiological signal of the heart is identified as a major
source of interference and needs to be removed. A single channel approach
of independent component analysis (ICA) was described to remove the ECG
interference signal from sEMG signal. The results were compared with a standard
technique to remove the interference signal.

After removing the ECG interference signal from the EMG data, a specific pattern
of muscle activity was identified: the burst of spikelike activity. This muscle
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activity is a continuous activation of a single type I motor unit and does not
benefit in for the postural load. This continuous activity could be one of the cause
of the muscle overload, leading to MSD. A detection algorithm is presented and
validated.

3.2 Data acquisition: stress assessment

As described earlier, a large part of the study was performed under contract of
a European project. This study aimed to evaluate the effect of mental stress
on the muscles of the shoulder girdle. Our group was responsible for the data
collection and the design of the protocol and the interpretation of the signals.
Two experiments were executed to collect the data and the design, the protocol,
the materials are described seperately in this chapter. In this manuscript, we will
refer to both experiments as stressexp 1 and stressexp 2 respectively.

3.2.1 Stressexp 1

Overview

The first experiment was designed to investigate the effect of a mental load on
the electrophysiological signals of the body. Therefore, the test subjects executed
different tasks (body in rest and during a physical load) with and without an
superimposed mental load. The physiological signals in this experiment include
sEMG signals in the shoulder girdle to monitor the muscle activity and heart rate
to investigate its variability. The muscles of interest were the m. Trapezius pars
descendens, m. Deltoideus medius, and the m. Infraspinatus of both left and right
side (see figure 3.1). The m. Trapezius pars descendens was included because
literature showed that its muscle activity is very sensitive to changes related to
mental stress [98, 95]. The Deltoideus is the prime mover of the shoulder abduction
which is used as physical load during this experiment and the m. Infraspinatus is
the muscle that is responsible for the posture of the body.

The study population was limited to healthy students and young people working
at the Katholieke Universiteit Leuven from 19 to 26 years old, 14 men and 14
women, aged 22 (±1, 96) years and an average body mass index (BMI) of 22 ±
2,33 kg/m2. Before the experiment, information about neck or shoulder complaints,
cardiovascular problems and whether subjects were right- or left handed was noted.
Upon arrival, the participants were informed on the course of the experiment
and signed an informed consent. The experiments were approved by the Ethics
committees of the Department of Psycholgy and the Faculty of Medical Sciences.
The study is in accordance with the Declaration of Helsinki.
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Figure 3.1: Position of the muscles used during both stress experiments. In stressexp
1: m. Trapezius pars descendens, m. Deltoideus medius, and the m. Infraspinatus. For
stressexp 2: m. Trapezius pars descendens, m. Trapezius pars transversus, m. Trapezius
pars ascendens.

Materials

On arrival, the participants were prepared for the recordings. The hair on the
body was removed if appropriate and the skin was cleaned. Contact electrodes
(Ag-AgCl, 10 mm diameter, Nikomed, Denmark) were used and positioned on the
muscles according to SENIAM recommendations [57] and palpation of the muscle.
During this experiment, left and right of the m. Trapezius pars descendens, m.
Deltoideus medius, and the m. Infraspinatus were measured (see picture 3.2(a)).
Two electrodes plus one reference electrode were placed for each muscle. Heart
rate was measured with two electrodes plus a reference electrode on the lower part
of the sternum. The exact position of the two electrodes is not crucial as long as
the heart is in between the two electrodes. We standardized the positioning of the
two electrodes (as shown in figure 3.3. The electrodes were placed on the ribs and
the upper part of the sternum to reduce the EMG interference of the m. pectoralis
major on the ECG data. Six channels of sEMG and one channel of ECG were
recorded via EMG preamplifiers (Mega Electronics Ltd, Finland). These analogue
signals were low pass filtered (450Hz) to avoid aliasing during digitization. The
Daqbook 2005 (IoTech, Ohio, USA) was used to digitize the signals at a sampling
rate of 1000Hz. An extra channel was added with a pulse generator (3V, 0.5s).
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This pulse was used to distinguish the different tasks during the test. Posture of
the participants was recorded during the test with a Sony (DCR-HC37E) camera.
The data were analyzed using MATLAB and LABVIEW 8.2.

(a) stressexp 1 (b) stressexp 2

Figure 3.2: Pictures of the positioning of the electrodes during the two stress
experiments. The reference electrodes are indicated in green.

Setting

The environment and the positioning of the subjects were controlled. Subjects
were seated in an ergonomic office chair, adjusted to the subjects body geometry
and comfort. Seat height was adjusted so that the subjects feet were flat on the
floor with a knee angle of ±90◦. Seat depth was adapted to the length of the
upper legs so that the distance between the front of the seat and the back of the
knees was approximately 5cm. Backrest height was positioned ergonomically for

Figure 3.3: Position of the electrodes to measure the ECG in red, the reference electrode
is given in green.
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optimal support to the lower back. The office chair had no arm support. The table
was adjusted to elbow height. The top of the computer screen was positioned at
the eye level of the subject. Horizontal distance between the eyes and the screen
was approximately 60 cm. This ergonomic adaptation of the test environment
ensured good posture of the neck, shoulders and back, with minimal postural
load. The participants were explicitly instructed not to speak, mumble or move
the lips, except for giving the answer during the mental task, to sit comfortably,
not to change posture or to move the body (except for the physical task). The
experimenter was seated next to the participant.

Overall Stress Level

To estimate the subjects overall stress levels, questionnaires were completed before
the experiment. In the first experiment the Positive Affect Negative Affect
Schedule (PANAS) is used [182]. PANAS is a psychometric scale developed to
measure the largely independent constructs of positive and negative affect, both
as states and traits. Positive and negative affect have been proven to be in
relationship with typical personality states and traits, such as anxiety.

Maximal Voluntary Contraction

Before the start of the experiment, the maximal voluntary contraction (MVC) of
the different muscles were recorded to allow the interpretation and comparison of
intersubject sEMG-signals during the experiments as described in the section 2.2.
The MVC of the trapezius pars descendens, the deltoideus and the infraspinatus
were measured respectively during a static maximal shoulder elevation with
stretched arms against a resistance, a maximal static shoulder abduction with
stretched arms at an angle of 45◦ and a static exorotation of the shoulder joint
where the elbow was fixed against the body. The maximal contraction was built up
over 5 seconds. The subjects performed 3 maximal contractions per muscle with a
rest interval of 1 minute. The highest sEMG-value of the 3 contractions was used
as the MVC. The amplitude of the muscle activity during different conditions of
the experiments could then be expressed as a percentage of the MVC.

Protocol

The participants were instructed to perform different tasks to change the mental
and the physical load and a combination of both mental and physical load. These
different tasks were:
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1. Rest(R): the subjects were sitting at ease with their hands in their laps.
During this rest period, a series of relaxing photos were shown on the
computer screen to reduce boredom. A complete test starts with rest and
after each active phase, there was another rest condition.

2. Physical task (PT): the subject performed a shoulder abduction of 45◦

with stretched arms during 6 minutes. This prolonged static posture was
intended to induce muscle fatigue.

3. Mental task (MT): the subjects were sitting with their hands in their laps
and performed a complex and challenging mental task, part 1 of the home
version of the MENSA test [102]. Time to complete the test was limited to
10 minutes without visual feedback of the remaining time. The answers were
formulated orally and noted by the experimenter.

4. Mental and physical task (MPT): the subjects performed a shoulder
abduction of 45 with stretched arms and solved part 2 of the MENSA test.
Time to complete the MENSA test was limited to 10 minutes without visual
feedback of the remaining time. The answers were formulated orally and
noted by the experimenter.

5. Self rating (SR): following each active task (MT, PT, MPT) the subjects
were asked to rate their subjective perception of stress at that moment on
the short version of the Spielberger State-Trait Anxiety Inventory (STAI)
[39]. This provided subject perceptions of their stress or anxiety levels at
the instant of rating. The scale comprises 6 terms rated on a scale of 1 to 4:
3 of negative affect (tense, nervous, worried) and 3 of positive affect (calm,
content, relaxed). The self rating lasts for 30 seconds.

In the protocol sequence, shown in figure 3.4(a), prior muscle fatigue from PT
may contribute to muscle load in MPT, confusing interpretations of mental task
muscle activity. We therefore used two task sequences and one with PT and MPT
switched, and assigned subjects randomly to one of both protocols. The different
phases are indicated in color and the most important conditions are indicated with
their acronym.

During the analysis of stressexp 1, several limitations appeared regarding the
design. A first remark is that with this randomization of the tasks, influence
of a preceeding task on the signals during MT could not completely be excluded.
A larger problem, especially for HRV analysis, was the inequality in length of the
different conditions: there was a maximum of 10 minutes to solve the MENSA test
during MT and MPT, but most participants finished the test earlier. Therefore,
a new experiment was set up to tackle these shortcomings.
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(a) stressexp 1

(b) stressexp 2

Figure 3.4: The different protocols for both series of experiments. Rest (R, green),
Mental load (MT, orange), Physical load (PT, yellow), Mental in combination with
physical load (MPT, red). For stressexp 1, grey means Self Rating (grey), while for
stressexp 2, grey shows the instance of the instructed sigh.

3.2.2 Stressexp 2

Overview

The second experiment was designed to investigate the additional effect on different
physiological signals of a mental load on a physical task. The results of stressexp 1
showed the presence of muscle activity during the mental task without a postural
load, but no effect could be seen on the muscle activity when an additional mental
task was applied to a physical load. Therefore, this second stress experiment
was designed to answer this question. During the design, the shortcomings of
stressexp 1 were taken into account and the physical load was modified to a
more realistic office task: the clicking of a mouse. This second stress experiment



DATA ACQUISITION: STRESS ASSESSMENT 65

was performed in collaboration with psychologists (Research Group on Health
Psychology, Katholieke Universiteit Leuven) where research is devoted on the effect
of sighing as a relief factor in stress situations.Muscle activity and heart rate were
recorded during this experiment next to the respiration. The deltoideus and the
infraspinatus muscle did not reveal any change due to a mental stimuli and were
discarded during this experiment. The scope was narrowed to the three parts of
the m. Trapezius (pars ascendens, transversus and descendens). Figure 3.1 gives
the position of these three muscles.

The study population for this experiment was limited to healthy students and
young people working at the Katholieke Universiteit Leuven from 18 to 26 years
old, 21 men and 22 women, aged 22 (±1, 97) years and an average body mass
index (BMI) of 22 ± 1,89 kg/m2. No other exclusion criteria were used. Before
the experiment, information about neck or shoulder complaints, cardiovascular
problems and whether subjects were right- or left handed was noted. Upon arrival,
the participants were informed on the course of the experiment and signed an
informed consent. The experiments were approved by the Ethics committees of
the Department of Psycholgy and the Faculty of Medical Sciences. The study is
in accordance with the Declaration of Helsinki.

Materials

The preparation of the test subjects is similar to the preparation during stressexp
1. The hair on the body was removed if appropriate and the skin was cleaned.
Contact electrodes (Ag-AgCl, 10 mm diameter, Nikomed, Denmark) were used
and positioned on the muscles according to SENIAM recommendations [57] and
palpation of the muscle. For each muscle, 2 recording electrodes plus one reference
electrode were used. In this case, the three parts of the trapezius muscle were
recorded on the left and the right side of the back. The positions of the electrodes
is visualized in figure 3.2(b)). Heart rate was measured with two electrodes (one on
the ribs and one on the upper part of the sternum to reduce the EMG interference
of the m. pectoralis major on the ECG data) plus a reference electrode on the lower
part of the sternum (see figure 3.3). Six channels of sEMG and one channel of ECG
were recorded via EMG preamplifiers (Mega Electronics Ltd, Finland). These
analogue signals were low pass filtered (450Hz) to avoid aliasing during digitization.
The cDAQ 9174 with modules NI 9239 (4 channels, channel-to-channel isolated,
24 bit) from national instruments (Austin, Texas) was used to digitize the signals
at a sampling rate of 1000Hz. An extra channel was added with a pulse generator
(3V, 0.5s). This pulse was used to distinguish the different tasks during the test.
The breathing data were continuously collected by means of respiratory inductive
plethysmography (RIP), using the LifeShirt System© (Vivometrics Inc., Ventura,
CA). Two RIP transducers at the level of the rib cage and the abdomen, sewn into
a LifeShirt garment including three accelerometers, were connected to the LifeShirt
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recorder, a digital processing unit including a data storage card. Posture of the
participants was recorded during the test with a Sony (DCR-HC37E) camera. The
data were analyzed using MATLAB and LABVIEW 8.2.

Setting

The environment and the positioning of the subjects were controlled similarly to
the stressexp 1 to ensure good posture of the neck, shoulders and back, with
minimal postural load. Subjects were seated in an ergonomic office chair, adjusted
to the subjects body geometry and comfort, with an adjusted seat height to ensure
that the subjects feet were flat on the floor with a knee angle of ±90◦. Seat depth
was adapted to the length of the upper legs so that the distance between the front
of the seat and the back of the knees was approximately 4 fingers. Backrest height
was positioned ergonomically for optimal support to the lower back. The table
was adjusted to elbow height and the top of the computer screen was positioned
at the eye level of the subject. Horizontal distance between the eyes and the screen
was approximately 60 cm. The participants were explicitly instructed not to speak
mumble or move the lips, to sit comfortably, not to change posture or to move the
body. The experimenter was seated next to the participant.

Overall Stress Level

To estimate the subjects overall stress levels, several questionnaires were completed
before the start of the experiment: the Positive Affect Negative Affect Schedule
(PANAS) [182], the Relaxation Inventory [33], the Perceived Stress Scale [27]
and a Daily Life Complaints List. This latter checklist is based on Wientjes and
Grossman [189] and contains the original 35 items and 4 additional dummy items
[68].

Maximal Voluntary Contraction

The maximal voluntary contraction (MVC) was measured to allow intersubject
sEMG-signals during the experiments as described in the section 2.2. The MVC
of the m. Trapezius pars descendens was measured from a static maximal shoulder
elevation with stretched arms against a resistance. The measurement of the MVC
of m. Trapezius pars transversus and m. Trapezius pars ascendens is difficult to
control and therefore less reliable. In stead, reference voluntary contraction (RVC)
was measured during maximal voluntary shoulder elevation. The left and right
muscles were measured simultaneously. The maximal contraction was built up
over 5 seconds. The subjects performed 3 maximal contractions per muscle with a
rest interval of 1 minute. The highest sEMG-value of the 3 contractions was used
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as the MVC. The amplitude of the muscle activity during different conditions of
the experiments could then be expressed as a percentage of the MVC or RVC.

Protocol

During stressexp 2, the focus of the tasks was on the additional effect of the mental
task to the physical task. Therefore, a mental taks without a postural load was not
included. The sigh was included for the collaboration with the group of psychology.
The effect of the instructed sigh is mainly visible in the rest conditions and does
not influence our analysis on the activity during the different tasks.

1. Rest (R): participants are watching a relaxing movie (’The march of the
Penguins’) exposing them to neutral stimuli reducing boredom during this
phase. Participants were ensured that no questions about the documentary
would be asked later so they can relax and enjoy the movie. A complete test
starts with rest and after each active phase, there was another rest condition.

2. Physical task (PT): PT consists of a pure physical office task of indicating
the largest number of three alternatives using the mouse cursor. Participants
used the mouse cursor to indicate the correct answer choosing between three
alternatives, but was not stressful: in contrast to the MPT, task difficulty
was extremely low, no time constraints were applied and no task evaluation
or reward for performance was given.

3. Mental and physical task (MPT): The task consists of continuous mental
calculations of five operations with a two- or three digit number (e.g. 287
+24 /2 -43 /3 +28 ) which had to be performed without verbal stimulation.
This task required the same motor movement as the PT (indicating the
correct answer with the cursor), but was executed after a mental task. After
the decision, feedback of the answer was given. Participants were informed
that at the end of the study, the five best performing participants would
be rewarded with a movie ticket. The experimenter was seated next to
the participant. MPT was considered to be stressful as task difficulty was
high. Feedback was given, evaluation and rewards were given related to
performance within time constraints and an observer was present [58, 85].
This task was repeated twice, where one task was followed by an instructed
sigh.

4. Sigh (S): The instructed sigh implied to sigh within the following 30-sec time
window. Participants were asked to practice an instructed sigh before the
test, so that the experimenter could check whether participants understood
and succeeded in executing the instructions.



68 SEMG PROCESSING AND ANALYSIS

The different active phases are fully randomized to prevent any bias on the
electrophysiological signals of preceding tasks. The first rest period is denoted to
be the baseline session and after each active task, the participants have 6 minutes
of recuperation. Figure 3.4(b) gives an overview of the different protocols. The
grey line indicates the sigh after MPT. The participants are assigned randomly to
one of the 6 protocols.

3.3 Preprocessing: ECG interference removal

3.3.1 Introduction

When looking at the raw sEMG signals of both experiments, a major source of noise
can be distinguished: the interference of the electrical activity of the heart on the
surface electromyography signals in the shoulder girdle. This interference signal is
influencing the signal analysis [24]. Therefore, the data needs to be preprocessed
to remove this ECG interference. The difficulty of the ECG interference removal
is mainly due to the large overlap between the ECG interference spectrum and
that of the considered sEMG signal (0-45Hz for ECG, 5-500Hz for sEMG).
Regular high pass filtering is not applicable as it removes a substantial part of
the sEMG information. Several approaches have been proposed to remove the
ECG interference signal. The template subtraction algorithm [12] uses the quasi-
periodic property, assuming a similar waveform of successive heartbeats in the
sEMG signals. This data driven method estimates the template of the interference
signal from the signal and subtracts this template on the occurrence of a heart
beat to eliminate the interference signal. The template subtraction algorithm
was applied successfully, but is sensitive to changes in the waveform of the ECG
interference signal. Other methods, like adaptive filtering [137] or convolutive ICA
were also proposed [43]. All these techniques require an ECG reference signal.

A new trend in biomedical signal processing is employing blind source separation
(BSS) to unmix a set of recorded signals (based on an extra constraint) into its
original sources. Independent Component Analysis (ICA) is one of these BSS
techniques assuming independency between the sources. Unfortunately, these
techniques are only applicable to multichannel data. Recently, several approaches
to extend this idea to single channel data are published in the literature. A first
approach, single channel ICA (SCICA), was presented by Davies and James [36].
The original data is chopped into several blocks of equal length and ordered in a
matrix before applying the ICA algorithm. This algorithm separates successfully
the sources of interest provided they have perfect disjoint spectra. The algorithm
also requires stationary data. Both limitations are not fulfilled in this specific
application. Another approach to enable the use of ICA in single channel analysis
is to decompose the signal into a multichannel representation before applying ICA.
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Several decomposition methods exist. Mijovic et al [106] combined ICA with either
of two decompositions, Ensemble Empirical Mode Decomposition (EEMD) [75]
and wavelets, and compared their performance with the SCICA method. They
referred to the EEMD and wavelet approach respectively as EEMD-ICA and
wICA. For electrophysiological signals, they showed that the latter two methods
outperformed the SCICA algorithm. The wICA method has already been shown
successful in removing the ECG artifact [8].

In this chapter, several methods are compared to remove the ECG interference
from the sEMG signals. A distinction is made whether a corresponding
ECG measurement is available or not. The performance of the wavelet-based
decomposition, the EEMD based decompostion and the template subtraction, to
our opinion still the golden standard in removing the ECG artifact, is compared.
These methods are modified to be applicable in both situations. In addition, we
look whether the extra ECG signal has an added value in the removal performance.
In a first simulation study, the effect of the parameter settings for EEMD to
remove the ECG artifact is investigated. Optimal parameters for EEMD-ICA are
retrieved from this study and used further in the analysis. In a second part, the
performance of EEMD-ICA to remove the ECG interference is compared with
wICA and template subtraction for both simulated and real data.

The ICA based algorithms are published in a joint paper with my colleague Bogdan
Mijovic, published in the IEEE Transactions on Biomedical Engineering [106]. I
contributed to the idea, the simulations and the applications in this paper. These
results have been presented earlier at the 29th Annual International Conference of
the IEEE, Engineering in Medicine and Biology Society (IEEE/EMBC) in Lyon
in 2007 and more results will be presented on the international Conference on Bio-
inspired Systems and Signal Processing, subconference of the 4th International
Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC
2011), Rome in January 2011. Both presentations resulted in a paper that is
published in the corresponding proceedings [159, 157].

3.3.2 Algorithms

Ensemble Empirical Mode Decomposition-Independent Component Analysis
(EEMD-ICA)

The idea behind the algorithm is to decompose a measurement into different
components before applying a blind source separation technique. Here, a single
sEMG channel is decomposed using Ensemble Empirical Mode Decomposition
(EEMD) before applying ICA [106]. EEMD [75] is a novel signal analysis tool
which is able to decompose any complicated time series into a set of spectrally
independent oscillatory modes, called Intrinsic Mode Functions (IMFs). While
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wavelets and other signal decomposition techniques tend to map the signal space
onto a space spanned by a predefined basis, EMD is a data driven algorithm which
means that it decomposes the signal in a natural way where no a priori knowledge
about the signal of interest embedded in the data series is needed. The advantage
of EMD is that this technique is able to deal with nonstationary and nonlinear
data. The more noise robust, noise-assisted version of the EMD algorithm, called
Ensemble EMD (EEMD) is used in this study. The algorithm defines a set of
IMFs for an ensemble of trials, each one obtained by applying EMD to the signal
of interest with added independent, identically distributed white noise of the same
standard deviation (SD). The ratio of the added noise standard deviation to the
standard deviation of the signal will be further referred to as a noise parameter
(np).

After EEMD is executed and a set of averaged IMFs is derived, independent
component analysis (ICA) is applied to the decompositions to retrieve independent
sources S. ICA is applied to the whole set of IMFs. It is worth noting that no
IMF subset has been preselected as input to the ICA algorithm in order to keep
this part of the algorithm as automatic as possible. Afterwards, the independent
sources that represent the ECG artifact signal are set to zero before reconstruction
of the cleaned sEMG signal without the ECG contamination.

The above described algorithm is the single channel approach. When in addition
to the sEMG signal,a simultaneously recorded ECG channel is present (two-
channel approach), both the ECG channel and the sEMG channel are decomposed
separately into a set of IMFs and are used together as input for ICA without further
preprocessing.

Algorithm 1 EEMD-ICA [106]

1: Add independent, identically distributed white noise with zero-mean and SD
equal to np times the SD of the original sEMG signal.

2: Apply EMD to derive a set of IMFs.
3: Repeat steps 1 and 2 a number of times, resulting into an ensemble of IMF

sets.
4: Average over the ensemble to obtain a set of averaged IMFs.
5: If the simultaneously recorded ECG channel is present, apply step 1 to 3 to

the corresponding ECG signal.
6: Perform the FastICA algorithm to the IMFs and derive the corresponding

mixing and unmixing matrices M and W.
7: Select the independent components (sources) of without the ECG interference

and multiply it with mixing matrix M to back-reconstruct its appearance in
the IMF set.

8: Sum over all the newly derived IMFs to reconstruct the original sEMG signal
cleaned from the ECG interference.
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Wavelet-Independent Component Analysis (wICA)

This algorithm is similar to the EEMD-ICA algorithm, but a single channel
signal is decomposed into components of disjoint spectra using the discrete
wavelet decomposition (DWT) instead of EEMD. For this study we chose the
Daubechies6 mother wavelet in accordance with the study of Azzerboni [8], but
similar conclusion holds for other mother wavelets. The DWT has the property of
a filter bank as shown in section 2.1.2. To maintain a good frequency resolution in
the band of interest, the order of decompositions was set to 8 [159]. The algorithm
was originally proposed by Azzerboni et al [8]. There, different, simultaneously
recorded sEMG channels were decomposed using the discrete wavelet transform
(DWT) before applying ICA.

In this study, both the sEMG signal and the ECG measurement (if present)
are decomposed. In the case of the single channel approach, only the sEMG
decomposition is used as input for the ICA algorithm, while for the approach
with the two channels, both the sEMG and the ECG decomposition are used
without any other preprocessing. After applying ICA on the decomposition, the
sources containing the ECG contamination are set to zero and the sEMG signal
is reconstructed.

Algorithm 2 wICA [106]

1: Select the mother wavelet of interest and the number of decompositions.
2: Apply the discrete wavelet transform on the sEMG signal to generate the

decomposition.
3: If the simultaneously recorded ECG channel is present, apply step 2 on the

corresponding ECG signal.
4: Perform the FastICA algorithm to the wavelet decompositions and derive the

corresponding mixing and unmixing matrices M and W.
5: Select the independent components (sources) of without the ECG interference

and multiply it with mixing matrix M to back-reconstruct its appearance in
the IMF set.

6: Sum over all the newly reconstructed wavelet decompositions to reconstruct
the original sEMG signal cleaned from the ECG interference.

Template Subtraction

Template subtraction is a method that subtracts a data driven template of the
artifact at its occurrence [12] in the signal. This method is at this moment still
the golden standard in removing the ECG interference signal. ECG template
subtraction uses the periodic characteristics of a heart beat in its electrophysiolical
appearance. An ECG waveform template is subtracted from the sEMG signal at
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each occurrence of the heartbeat. The moment of a heart beat can be localized
very accurately from the QRS-complex in a simultaneously recorded ECG signal.
This method has proven its ability to remove the ECG contamination artifact
in previous studies and is, to our opinion, still the golden standard in removing
the ECG artifact. The template subtraction is defined in the literature as a two-
channel method where the corresponding ECG signal is present.

The two channel approach of the ECG template subtraction algorithm as described
in [12] involves two steps. In the first step, a template of the ECG interference
waveform is trained from the sEMG data. This is necessary because the waveform
of the ECG contamination depends on the position of the electrodes and differs
for each sEMG signal. From a training epoch selected in the sEMG signal, several
500ms sEMG signal segments each containing one heart interference signal are
selected. One segment is selected by detecting the moment of QRS complex in the
corresponding ECG signal and selecting the sEMG signal 250ms before and 250ms
after this moment. The ECG template is calculated by averaging these different
segments, assuming that sEMG has a zero mean Gaussian distribution. This
results in a waveform template of ECG contamination of 500ms. In the second
step, the template is used to clean ECG contamination in the complete muscle
signal. At the occurrence of a heart beat, the ECG template is subtracted from
the sEMG signal. Because the ECG template is data driven, the delay between the
heart ECG signal and the ECG contamination in the sEMG is taken into account.

To have a fair comparison with the single channel wICA and EEMD-ICA, the
template subtraction algorithm needs to be adapted to a single channel technique
without the presence of the corresponding ECG signal. This adjustment is
retrieving the occurrence of the heart beat from the sEMG signal itself. In
the power spectrum of the contaminated sEMG signal, the ECG information is
mainly present below 40Hz. Therefore, a bandpass filter of 5 − 40Hz is used and
this filtered sEMG signal is used to localize the ECG beats by applying the Pan
Tompkins [120] algorithm. The further implementation of the algorithm is similar
to the traditional two-channel approach: in a first step, the subtraction template
is trained from the data itself and afterwards, this template is subtracted at the
occurrence of a heart beat.

3.3.3 Data

Simulated Data

The simulation signals are derived from real-life contamination-free recordings.
The sEMG signals are 60 second segments, selected from three different sEMG
recordings (in the text referred as ref(t) ) at different contraction levels. The
signals are extracted from measurements of the right Biceps brachii muscle
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and are not influenced by an ECG interference signal. This is confirmed by
visual inspection in time and frequency domain of the sEMG signal. The ECG
artifact templates were extracted from representative real-life contaminated sEMG
measurements of the left and right trapezius muscle pars ascendens, transversus
and descendens. Using these templates, seven artificially contaminated ECG
signals (referred to as ecg(t)) are generated. The reference sEMG signals and
artificial ECG signals are normalized. By mixing up the reference sEMG signals
and the artificial ECG signals, a simulation data set is defined.

sigi(t) = refe(t) + λecgc(t) (3.1)

with e the selected sEMG reference signal, c the simulated ECG contaminated
signal and λ the proportion factor. For this study, λ was selected as one of the
values (0.01, 0.1, 0.2, 0.5, 1, 2, 3, 5, 7, 10), resulting in 21 simulations per value of
λ. An example is given in figure 3.5.

Real-life Data

The real-life signals were selected from both stress experiments as described in
section 3.2. During visual inspection of the sEMG-signals, specific types of sEMG
signals could be identified: muscle in rest, firing of a single motor unit, low force
contractions, high force contraction, non-stationarity. 8 different sEMG segments
are selected from the various recordings, each lasting for 30s. The selection was
made to have a representative set of sEMG epochs compared to the complete data
recordings of all the test subjects.

Validation

For the simulation data, the outcome of the ECG removal algorithms can be
compared with the original reference signals for validation. Therefore, the relative
root mean square error (RRMSE) is calculated to compare the performance of the
different algorithms.

RRMSE(%) =

√

1

N

∑N
t=1

(ref(t) − â(t))2
√

1

N

∑N
t=1

â2(t)
× 100 (3.2)

where â is the estimate of the signal of interest, ref(t) the reference sEMG signal
and N the number of samples.
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For all the simulations, the number of independent components in ICA to be
extracted was set to 5 according to the study by Mijovic et al (Mijovic, 2010)
as he showed that 5 decompositions were sufficient. The EEMD-ICA and wICA
algorithms were fully automated during the simulations. After applying ICA on
the decompositions by both algorithms, the identification of the ECG sources is
needed. Since the artificial ECG signal was available during the analysis, the
independent ECG sources could be estimated automatically by analysing the
correlation between the independent sources and the artificial ECG signal.

For the real-life data, the reference sEMG signal is not present, implying that
the RRMSE cannot be calculated. Therefore, the outcome of the three different
algorithms is visually scored by an expert regarding their performance in removing
the ECG artifact. A good performance indicates a good removal of the ECG
artifact while preserving the sEMG signal without distortion. The outcome of
the three algorithms applied to the seven signals is scored regarding their removal
performance of the ECG artifact (1 to 5; no removal to perfect removal) and their
distortion of the sEMG signal (1 to 5; sEMG signal is completely removed to no
distortion of the sEMG signal).

3.3.4 Results

The results of the algorithm during the simulations and real life data are presented.
In the first part, the results of the single channel approach are presented where
only the sEMG signal is available. In the second part, the results are shown when
a corresponding ECG channel is used.

single sEMG channel

Figure 3.5 shows a fragment of a contaminated sEMG data. Several interference
peaks of the heart are clearly visible in the data. The magnitude of the ECG
interference is larger than the sEMG signal. On this signal, the EEMD-ICA
algorithm is applied, resulting in 5 independent components derived from the ICA
step. These independent components are shown in figure 3.6. ICA splits up the
ECG interference and the sEMG signals in separate independent sources. Looking
at the nature of the ECG contamination, we can identify the ECG sources as the
sources number 2 and 4. These two sources are set to zero and the cleaned sEMG
signal is reconstructed with sources 1, 3 and 5. Figure 3.7 shows the sEMG signal
after reconstruction without the ECG interference sources. The ECG interference
signal is visibly removed and the distortion of the reconstructed sEMG signal is
limited. These figures reveal that the EEMD-ICA algorithm is able to remove the
ECG artifact from a single sEMG measurement.
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Figure 3.5: Fragment of a typical sEMG with the ECG interference signal.

Figure 3.6: 5 independent sources after executing ICA on the IMFs after EEMD
decomposition of the contaminated sEMG signal. Source 2 and 4 are related to the ECG
interference signal
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Figure 3.7: Cleaned sEMG after ECG interference removal

The noise parameter, the ratio of the noise standard deviation to the standard
deviation of the signal power, and the number of trials have an impact on the
outcome of the EEMD algorithm and are specific for the application. We need to
look for the optimal number of trials and the optimal noise parameter. EEMD-ICA
was executed on the simulation data set with varying EEMD parameters. The np
varied between 0.2, 0.5 and 1 and the number of trials used for ensembling, varied
between 100 and 200. Figure 3.8 shows the RRMSE for 6 different parameters.
Each point is the mean of 21 simulations. To maintain the visibility of the figure,
the standard error is not shown.

The simulations reveal that the selection of parameter settings has limited effect
on the RRMSE in the range of -10 to 10dB. Only for higher and lower SNR,
differences in parameter settings can be seen. For higher SNR, a lower np results
in a lower RRMSE (green and black dot on the plot), while for lower SNR, a lower
number of trials offers a better RRMSE (yellow and green dot on the plot). For
higher SNR, the number of trials did not influence the results. Therefore, the
decision is made to use a noise parameter np of 0.2 and an ensemble of 100 trials.
These parameters will also be used for the decomposition of the simultaneous ECG
signal in the two-channel approach.

Figure 3.9 shows the performance of template subtraction, the wICA and the
EEMD-ICA method on the simulation data set when no simultaneous ECG signal
was used. For a changing SNR the results are presented with their mean and
standard error. The parameters used for the EEMD-ICA were set to 0.2 for the
np and 100 for the number of trials as described earlier.

The discussion of the results of the algorithms using only the sEMG channel can be
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Figure 3.8: RRMSE after removing the ECG contamination for various settings of the
EEMD-ICA-parameters

Figure 3.9: Algorithm performances with only the sEMG channel available (RRMSE in
%) for the described simulation. The results are presented as mean and standard error
for the different SNR.
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Figure 3.10: ECG removal of a 5 second fragment of signal 2 using only the sEMG
channel. (A) shows the original signal; (B) shows the result after wICA; (C) shows the
result after EEMD-ICA; (D) shows the result after template subtraction.

split up in two parts. Around the SNR of 2dB, the simulations reveal no difference
between the three algorithms with a relative RMS error close to 10%. For higher
SNR, where the power in the sEMG signal is higher than the power in the ECG
interference signal, the RRMSE is lower than 10% for all three algorithms. The
error made by the template subtraction and EEMD-ICA is similar to each other
and is lower than the error using wICA. For the lower SNR, both ICA based
algorithms perform much better compared to the template subtraction.

Figure 3.10 (a) shows a 5 second fragment of a representative real-life sEMG signal
(signal 2 in table 3.1) where the ECG interference needs to be removed. The
outcome of the wICA, the EEMD-ICA and the template subtraction algorithm
is plotted respectively in figure 3.10 b, c and d. Both ICA based algorithms
are able to reduce the ECG artifact completely, while template subtraction (D)
induces a subtraction artifact at one ECG peak in this fragment. When examining
the outcome of the wICA (B) algorithm, small residues of the artifact are still
present. Only EEMD-ICA (C) is for this specific example able to remove the
artifact perfectly. Both wICA and EEMD-ICA remove the baseline drift, and no
distortion of the sEMG signal has been noticed. An overview of the removal of
the ECG interference interference of all the real-life signals is shown in appendix
A.

Table 3.1 gives the scores for the performance of the three algorithms on the real-life
data set using the single channel approach. A general trend can be noticed. Both
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Table 3.1: scores on the performance of the three algorithms when applied to 8 real-life
signals (numbered in the 1st column from 1 to 8) using only the sEMG channel. The
scores range from 1 (very bad) to 5 (perfect).

ECG removal EMG distortion
Templ Subtr wICA EEMDICA Templ Subtr wICA EEMDICA

1 4 5 5 5 5 5
2 2 4 5 5 5 5
3 4 3 5 5 4 4
4 5 5 5 5 5 5
5 4 5 5 5 5 5
6 4 5 5 5 5 5
7 5 5 5 5 5 5
8 5 5 5 5 4 5

ICA algorithms perform better compared to the template subtraction in terms of
removing the ECG artefact. On the other hand, template subtraction does not
distort the sEMG signal, while wICA and EEMD-ICA did for several sEMG signals.
This problem is more present for wICA compared to EEMD-ICA. Signal 6 shows
a distortion of the sEMG signal after applying template subtraction, in contrast
to wICA and EEMD-ICA. This reduced performance for template subtraction is
caused by the presence of the 50Hz component in this signal. Both ICA based
algorithms extracted this component as a separate independent source, which was
removed in the ICA step.

sEMG and ECG channel

For the two-channel approach, the same parameters as for the single channel
approach are used for EEMD (2 and 100 respectively for the noise parameter and
number of trials ). Figure 3.11 shows the performance of template subtraction,
the wICA and the EEMD-ICA method on the simulation data set using both the
ECG and the sEMG channel. The largest improvement is the performance of the
template subtraction algorithm for lower SNR. Here, this algorithms achieves the
best performance of the three described algorithms. For higher SNR, EEMD-ICA
still performs the best of the three algorithms.

Figure 3.12 shows the outcome after removing the ECG interference signal of the
same sEMG fragment of figure 3.10, but here the corresponding ECG channel
is included to remove the interference signal. The results reveal that the ECG
channel has no influence on the outcome of the EEMD-ICA and the wICA
algorithm. An improvement is noticed for the performance of the template
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Figure 3.11: Algorithm performances in the two-channel approach with sEMG and
ECG simultaneously available (RRMSE in %) for the described simulation. The results
are presented as mean and standard error for the different SNR.

subtraction (D). Because the extra ECG channel allows a perfect localization of the
occurrence of the interference signal, the subtraction of the interference waveform
is more accurate and less subtraction artefacts are induced. A similar tendency
can be concluded, looking at table 3.2. The differences with the single sEMG
approach, shown in table 3.1, are indicated in bold. Template subtraction is able
to remove all the ECG interference signals, whereas this was not the case when
using only the sEMG signal. The ICA based algorithms show no improvement.
An overview of the removal of the ECG interference interference of all the real-life
signals is shown in appendix A.

Computational time

Table 3.3 gives an overview of the mean time needed to remove the ECG
interference signal using the three techniques. The EEMD-ICA is slowest of the
three techniques. The two-channel approach needs to decompose both the sEMG
and the ECG channel using EEMD. The EEMD is an iterative algorithm that
needs to be executed 100 times for noise robustness.
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Figure 3.12: ECG removal of a 5 second fragment of signal 2 using the simultaneous
sEMG and ECG channel. (A) shows the original signal; (B) shows the result after wICA;
(C) shows the result after EEMD-ICA; (D) shows the result after template subtraction.

Table 3.2: scores of the performance of the three algorithms using both sEMG and ECG
channel when applied to 8 real-life signals (numbered in the 1st column from 1 to 8). The
scores range from 1 (very bad) to 5 (perfect).

ECG removal EMG distortion
Templ Subtr wICA EEMDICA Templ Subtr wICA EEMDICA

1 5 5 5 5 5 5
2 5 4 5 5 5 5
3 5 4 5 5 4 4
4 5 5 5 5 5 5
5 5 5 5 5 5 5
6 5 5 5 5 5 5
7 5 5 5 5 5 5
8 5 5 5 5 4 5
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Table 3.3: Computational time to remove the ECG interference signal. Time is give in
mean ± SD.

sEMG sEMG + ECG
template subtraction 0.92 ± 0.08s 0.91 ± 0.09s
wICA 1.1 ± 0.09s 1.6 ± 0.10s⋆

EEMD-ICA 446 ± 49s 865 ± 53s⋆

⋆ Significant difference with the one channel approach(p < 0.05)

3.3.5 Discussion

The use of independent component analysis for removal of ECG artifacts has been
described before [8]. However, all these algorithms are using a simultaneously
acquired ECG channel as input. These algorithms show good performance
in removing the ECG. In real-life measurements, a simultaneously recorded
ECG channel is not always available, making the removal of the ECG artifact
more complicated. In this study, we used recently developed single channel
ICA techniques, described in the literature, to remove the interference signal
and compared it with a widely used technique. The single channel is first
decomposed into a multichannel signal using wavelets or ensemble empirical
mode decomposition. The multichannel decomposition is then used as input
to a subsequent independent component analysis in order to remove the ECG
interference.

Both ICA based methods are able to remove the ECG artifact from the sEMG
channel and perform better compared to template subtraction as soon as the
ECG artifacts become more dominant (lower SNR). This can be explained by
the limitations of the template subtraction technique. The algorithm uses the
quasi-periodic property of the ECG artifact but assumes a constant waveform of
successive heart beats. Furthermore, perfect localization of the occurrence of the
heart beat is needed. If one of these assumptions is not fulfilled, the algorithm will
introduce subtraction artifacts. In reality, the successive waveforms are slightly
varying and perfect localization in the sEMG signal itself is more difficult, which
is revealed in figure 3.10 for the real-life data. These subtraction artefacts are not
present when the corresponding ECG channel is used (see figure 3.12). Thus, the
larger the ECG interference signal is compared to the background sEMG signal,
the larger these subtraction artifacts are. This explains the higher RRMSE for
lower SNR. These limitations do not hold for both ICA based algorithms as these
algorithms exploit statistical properties of both underlying signals to separate
them.

The difference in performance between the results of wICA and EEMD-ICA can
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be explained via differences in decomposing the original signal. The EEMD is a
data-driven method and has a more natural decomposition, without a predefined
base like the wavelet decomposition, that is able to cope with nonstationarities in
the signal. Contrary to the wavelet decomposition, the extracted intrinsic mode
functions can be spectrally overlapping. This leads to a more natural selection of
the independent sources of the ICA afterwards, explaining the small differences in
favor for the EEMD-ICA.

When the corresponding ECG channel is present, the performance of the template
subtraction improves. The localization of the interference signal is more accurate
and the subtraction of the interference waveform is better and less subtraction
artefacts are induced. On the other hand, the ECG channel does not improve
the performance of the wICA and the EEMD-ICA algorithm. The explanation is
that the ECG channel in its pure form does not provide extra information. The
waveform of the ECG interference signal and the corresponding ECG measurement
are not equal and there is a delay between the ECG interference and the ECG
channel. The results reveal that adding an extra channel do not offer extra
information in the ICA decomposition.

A major drawback of the EEMD-ICA algorithm is its computational cost. The
empirical mode decomposition is a data driven, iterative process of selecting
local maxima and minima for each empirical mode. This is a computationally
intensive decomposition. The noise robust extension of EMD, called ensemble
EMD (EEMD), needs more time as the algorithm ensembles the outcome of at least
100 trials of a single EMD. In contrary, the wavelet decomposition is a straight-
forward method based on a predefined wavelet waveform. The computational
load of wICA is similar to that of template subtraction, while EEMD-ICA is in
the order of 300 times slower. This high computational load makes a real-time
implementation impossible.

In general, when the corresponding ECG signal is not available, EEMD-ICA
is better compared to wICA and yields similar performance as the template
subtraction for higher SNR, while for lower SNR, EEMD-ICA is significantly better
than template subtraction and slightly better than wICA. We can conclude that
for offline use, EEMD-ICA has the best performance. When the ECG channel is
present, the template subtraction is preferable.

For the removal of the ECG interference signal in the data, described in 3.2,
template subtraction is used. The corresponding ECG channel was present for
these measurements, which explains this decision. The results in this section
showed that the performance of template subtraction is better compared to both
ICA-based approaches and the computational time of the template subtraction is
shorter compared to both ICA-based techniques.
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3.4 Single motor unit firings: Detection algorithm

3.4.1 Single Motor Unit Firing

When analyzing the sEMG signals of the trapezius muscle parse descendens of the
first experiment, a specific pattern was observed during the conditions without
postural load: long lasting bursts of peak activity. Figure 3.13(a) shows a fragment
of 2 seconds of a sEMG signal with this phenomenon. The peaks appeared at a rate
of approximately 12 peaks per second. It is physiologically impossible that these
peaks are the interference signal of the heart, although the shape is very similar to
an ECG interference peak. The consecutive peak shapes are very similar. This can
be seen in figure 3.13(b) where the peaks are plotted one on each other. We could
conclude that this burst of peaks is a single motor unit action pulse train of a low-
threshold motor unit. In this manuscript, we will refer to this as a single motor unit
firing (SMUF). This sEMG signal differs from a common sEMG signal, induced
by a normal and conscious contraction where several motor units are recruited
for contraction and is an extra and undesired load of the active muscle fibers,
possibly leading to musculoskeletal disorders due to exhaustion of this type of
muscle fibers. Moreover, this contraction was present during conditions where the
subject was informed not to change posture or move his hands. Possible conscious
contractions during this period were of very short duration (less then 1 second).
This is additional evidence that this type of muscle contraction is unconscious.

(a) (b)

Figure 3.13: the left figure (a) shows an example of a spike train from a single motor
unit of 2s. The right figure (b) plots the different spikes on top of each other [156].
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Figure 3.14: Schematic overview of the spike train detection algorithm consisting of
three consecutive steps: segmenting the high energetic part using the non linear energy
operator, extracting different spikes and calculating the correlation between the spikes
[156].

Research has been devoted in understanding the behavior of this type of low-
threshold motor units during low force contractions from the trapezius muscle
with respect to the motor unit recruitment and derecruitment [184], conduction
velocity [47] . . . . These low-threshold motor units were also a topic of research
during stress monitoring where their behavior was studied during tasks of mental
stress [152, 185]. In contrast to our study where single channel differential sEMG
measurements on the surface of the skin were used, these motor unit firings were
visible with measurements using invasive wire electrodes.

The sEMG signals, 6 per test subject and 28 subjects, were visually inspected by
two independent experts and this type of activity was identified as low threshold
motor unit firings. All segments with this single motor unit firing were labeled.
The inclusion criteria were spiky activity as shown in figure 3.13(a), with isolated
spikes and lasting for at least 10 spikes.

The observation, the detection algorithm and the results of the detection are
published in the journal paper in Methods of Information in Medicine [156].

3.4.2 Detection algorithm

To detect the spikes in sEMG signals, we used the spike train detection algorithm
as described by Deburchgraeve et al. [38]. The latter algorithm is developed for
the detection of seizures in the EEG of neonates and is fully automated. This
detection algorithm was adapted to our needs and consists of three consecutive
steps as shown schematically in figure 3.14.

In a first step, high energetic parts of the EMG are segmented using a Non Linear
Energy Operator (NLEO) proposed by Kaiser [81].

ψkaiser[xn] = x2
n − xn−1 · xn+1 (3.3)
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With basic properties:

ψkaiser[xn] = A2 sin2(ω0n) (3.4)

This operator is proportional to the square of both the immediate frequency
and amplitude. Because of these properties, the NLEO amplifies the high-
frequency spikes of the spike train relative to the background EMG, facilitating
the segmentation. We can conclude that the NLEO accentuates the spikes. Here,
the version described by Plotkin et al [125] is used which is more robust to noise.

ψkaiser[xn] = xn−l · xn−p − xn−q · xn−s (3.5)

l + p = q + s (3.6)

The parameter settings were l = 1, p = 2, q = 0 and s = 3 for local energy
calculation [37]. The NLEO calculates the energy of the signal based on only a
few samples and is very local in time. The spikes have a magnitude of around
30ms as shown in figure 3.13(b). Therefore an extra smoothing (4 samples) of
the NLEO output is performed by using a moving average filter. With simple
thresholding of the smoothed signal, segments with high energy are located.

The second step analyzes the spikiness of the detected high energetic segments.
This spikiness implies that the spikes need to be ’isolated’ in the EMG by
comparing the energy of the detected segment with its immediate background
activity. The spikiness is calculated using formula 3.7. The segment in the formula
is defined as the period of the smoothed NLEO that crosses the threshold. The
background is period of activity of 50ms before and after this segment.

spikiness =
max(segment)

mean(background)
(3.7)

The final step is the correlation analysis. To detect the occurrence of a repetitive
pattern of segments, a correlation scheme was developed that grows a set of highly
correlated segments with a correlation of 0.9 between two consecutive segments
[38]. If more than 10 correlated segments are detected (approximately 1 second
of single motor unit firing), the segments are classified as spikes of a spike train.
Finally, the output of the algorithm is a set of highly correlated, high energetic
spike-like segments corresponding to the spikes of the spike train.
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Table 3.4: Results of the detection of the single motor unit firings in the trapezius muscle
using the described algorithm.

Description Results
Presence of single motor unit firings 18 out of 28 subjects

Segments determined as single motor unit firings 74
Detected segments 78

Correct detections (true positives) 74
Sensitivity 100%
Specificity 94.8%

3.4.3 Results

The analysis of this algorithm was performed on the data of stressexp 1 (section
3.2.1). The single motor unit firing was present in 18 out of the 28 test subjects
on at least one of both trapezius muscles during a rest condition or during the
condition with only the mental load. 74 different segments were observed with
this single motor unit firing with an appearance rate from 1 up to 12 different
segments per test subject, lasting from 10 to 189 seconds. In 6 of the 10
subjects without single motor unit firings, there was no muscle activity at all
during the rest conditions or the mental condition. The other 4 subjects showed
continuous muscle activity on both trapezius muscles and no single motor unit
firing could be distinguished. These single motor unit firings were found only in the
trapezius muscle and not on the sEMG signals of the other two muscles (deltoideus
and infraspinatus muscle). The algorithm was performed on the complete data.
However, only results during rest and the mental load condition are shown. This
single motor unit firing could not be found during the postural condition (with and
without mental load). This explanation is straight-forward as the trapezius muscle
is a prime mover for shoulder abduction. For a conscious contraction, several motor
units are firing, making the detection of a single motor unit impossible with the
differential measuring method we used.

Figure 3.15(a) shows the beginning of a spike train. This is the same spike train
as shown in figure 3.13. Initially, the muscle is at rest and on the moment of the
black arrow, a single motor unit starts firing. This is detected by the algorithm.
There was no change in posture noticed at this moment when analyzing visually
the recorded movie. Figure 3.15(b) shows the end of the same spike train. The
black arrow indicates the initiation of the shoulder abduction. This whole spike
train with firings from a single motor unit (see figure 3.13) lasted in this particular
case 46 seconds. These figures show that the algorithm is able to detect the spike
trains originated by the firing of a single motor unit.

Table 3.4 gives an overview of the performance of the detection algorihtm. The
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(a) Single motor unit firing on the trapezius muscle during the rest condition.

(b) Single motor unit firing before the shoulder abduction in combination with the
mental task.

Figure 3.15: Two examples of the performance of the detection algorithm [156].

algorithm reached a sensitivity of 100% as all 74 segments with single motor unit
firings were detected. The algorithm detected 4 more segments as single motor
unit firings, leading to a specificity of 94.8%. By inspecting these false positives,
it appeared that they were not really single motor unit firings, but at these time
instants, there were just a few (2 or 3) motor units firing. These segments were
not selected as single motor unit firings, but they are also not recognised as regular



SINGLE MOTOR UNIT FIRINGS: DETECTION ALGORITHM 89

sEMG contractions.

The sEMG signals of stressexp 1 were used for the analysis and validation of the
algorithm. During the analysis of stressexp 2, this single motor unit firings on the
trapezius pars descendens muscle was visible in 31 of the 43 subjects. In the 12
subjects without this pattern, 8 showed no activity in this muscle. In the other 4
cases, the muscle was fully active during the whole test, and no single motor unit
firings could be distinguished.

3.4.4 Discussion

In this section, a special type of muscle contraction is described, discovered during
a laboratory test. During the stress test, the participants were performing a mental
task in combination with and without a postural task. In 65% of the test subjects,
a pattern of the firing of a single low-threshold motor unit on the trapezius muscle
was present. This is remarkable as the measurement of the electrical activity was
a differential single channel measurement on the surface of the skin and not an
invasive measurement with wire electrodes.

These specific patterns provide clear evidence of spontaneous muscle activity in the
trapezius muscle. This type of activity is not seen in the other measured muscles:
m. Infraspinatus and m. Deltoideus. The physiological meanig of a single motor
unit firing is a very low contraction of the muscle performed by a limited number
of muscle fibers, frequently performed subconsciously. Rekling et al [133] showed
in their review study that the changes in the noradrenaline hormone, induced by
mental stress, cause an increased excitability of the type I motor neurons due
to a lower current threshold to induce repetitive firings. They assume that the
trapezius muscles have more noradrenalin receptors and are part of the basic stress
response of the body. This is in accordance with the fight-or flight reaction where
the body is prepared to fight or to flight. The arms of the subjects are the front
paws of the animals. Putting pretension on the muscles in the shoulder girlde
enables a faster reaction for fighting or running away. Westgaard [185], however,
considers that this low-threshold motor unit activation may come possibly from
respiratory activity as they found respiratory modulation of the firing rate of single
motor units. In this study, no respiration signal was measured, so this could not be
verified. In chapter 4, we will show via heart rate variability (HRV) analysis that
stress was induced during the mental task. Despite this, we have found this single
motor unit firing in both the condition with rest and with the mental task. To link
this activity with mental stress, we would have expected to see this activity more
frequently during the condition with the mental load. Perhaps, the test subjects
were not at ease during the rest periods, or were nervous for their results, but this
would have been reflected in the HRV analysis, which was not the case.
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We can not exclude completely that there is more than one motor unit firing
and that this motor unit is outside the detection area of the detection volume.
However, we reduced this possibility by placing the electrodes on the muscles
according to SENIAM guidelines [57], to achieve more uniformity in the sEMG
measurements. Therefore, guidelines are developed for muscles close to the skin
surface with the optimal placement of the electrodes to achieve the best possible
quality of sEMG signals and to have as many motor units in the detection volume
as possible. A sustained contraction of a muscle fiber leads to exhaustion of that
fiber, resulting in MSD. They may be significant for prevention of shoulder muscle
strain injuries. These spontaneous firings of muscle fibers without contribution to
physical activity should be avoided and therefore a detection algorithm is beneficial
to make the subject aware of the muscle activity [146]. The presented algorithm
showed excellent performance in localizing this specific type of muscle activity.
Due to the simplicity of the presented algorithm, it shows potential to be used in
a real time biofeedback system.

Further research is necessary to draw conclusions on the origin of these firings
which might better motivate the benefits of detection of this phenomenon. In
future research, we suggest to use high density sEMG, to have both spatial and
temporal information of the muscle activity.

3.5 Rest Level Estimation

3.5.1 Introduction

During stress assessment algorithms, the estimation of the reference rest level of
the sEMG signals is needed. During most tests, a baseline session is included in
the protocol to determine the rest level. An initial baseline measurement before
the measurement is often used, but however it can have ambiguous results, with
no guarantee that subjects can definitely relax. A common method to estimate
the rest level of a sEMG measurement without reference baseline is to determine,
by agreement, a threshold at a certain percentage of the sEMG value during the
maximal voluntary contraction (MVC). In the literature, common measures are
ranging from 1 tot 5% of MVC [32, 139, 143, 167]. When the RMS value is above
this threshold, the muscle is considered as active; while values below this threshold
indicate a muscle in rest. When validating the rest level of the data described in
section 3.2 visually, the rest level of the sEMG data ranged from 0.3 to 3.5% MVC.
This range implies that a threshold on the MVC value is not reliable for indication
of the rest level of the sEMG signal. When taking the threshold too high, for
example, a value of 2%MVC, for several muscles this already is indicative for a
muscle in contraction, while for other muscles this is not even the level of a muscle
in rest.
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To overcome these problems, there is a need to estimate the rest level of an
sEMG signal for every single sEMG measurement. Therefore, we proposed a
new, data driven method, to estimate the rest level of the muscle to automate
this process: Rest Level Estimation (RLE). This method uses properties of the
frequency domain of a sEMG signal.

This algorithm has been presented at the Annual Symposium of the IEEE/EMBS
Benelux Chapter, Heeze (The Netherlands) in December 2007 [158].

3.5.2 Rest Level Estimation Algorithm

Figures 3.16 and 3.17 show representative sEMG signals from respectively a muscle
in rest and a muscle in contraction. The top plot shows the time domain of
the sEMG signal and the bottom plot presents its corresponding PSD plot. The
frequency content from a muscle in rest is mainly noise. There is no contraction
and no electrical activity is recorded. The active muscle shows that most energy
in the frequency domain is below 200 Hz. Bearing this in mind, 2 regions in the
frequency can be defined [13, 104]:

• 10-200Hz: dominant frequencies in active state of the muscle.

• 300-500Hz: low energy in both rest and active state.

When calculating the ratio of the mean energy in both frequency bands, the ratio of
a muscle in rest is approximately one, while the ratio for the muscle in contraction
is much higher.

This parameter is used to distinguish between the active and the rest state of a
muscle and not meant to deliver precise information on the state of activity. We
can therefore filter out heuristic frequencies without losing information related to
the state. In section 3.3, the interference of the ECG signal has been identified
as a major source of noise of the sEMG signals, especially for the muscles in the
shoulder girdle. The main energy of the ECG signal is below 40Hz [155]. Bearing
this in mind, the active region is selected from 50-150Hz, to discard the ECG
contamination and the power line interference. The rest level estimation value
(RLE) is the ratio of the mean energy in the activity band (50-150Hz) in the
frequency domain and the lower activity band (350-500Hz) as presented in the
equation below.

RLE =
1

150−50

∫ 150

50
PSDEMG(f)df

1

500−350

∫ 500

350
PSDEMG(f)df

(3.8)
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Figure 3.16: sEMG signal from a muscle in rest. 3.16(a) shows the signal in time
domain, 3.16(b) shows the signal in frequency domain.

Where PSDEMG is the PSD of the sEMG signal of interest.

This ratio is approximately one for a muscle in rest while for a muscle in contraction
this ratio is much higher (typically >20). The exact value of this ratio depends on
different factors like the amount of produced force, the amount of muscle fatigue,
the overall fitness of the muscles and so on, but for each contraction, this ratio is
much higher than one. As we are interested in the distinction between a muscle
in rest and an active muscle, these flutctuation of the ratio do not influence the
decision whether a muscle is in rest. We can set intuitively a decision threshold,
where a higher ratio depicts an active muscle and a lower value of RLE is equivalent
for a muscle in rest.

To apply this algorithm on a larger data set, the PSD is calculated based on a time
window of m samples and the ratio of the mean power in both frequency bands is
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Figure 3.17: sEMG signal from an active muscle. 3.17(a) shows the signal in time
domain, 3.17(b) shows the signal in frequency domain.

derived. The window is shifted afterwards over n samples. In this study, we use a
time window of m = 125ms and a shifting of n = 25ms. The distinction between
the active and rest state is made on this series of RLE-values.

3.5.3 Results

Simulations

To find the optimal threshold value to discriminate between a muscle in rest
and a muscle in contraction, a simulation study is executed. Different 10 second
recordings from the biceps bracchii muscle, the deltoideus muscle and the trapezius
muscle in rest is used. On top of one of these sEMG signals, the sEMG signal
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from a contraction of 5s is superimposed. We selected 10 different sEMG signals
of 5s muscle contractions, denoted as EMGk(t), from different muscles: biceps
bracchii muscle, deltoideus muscle, trapezius muscle, infraspinatus muscle. We
selected also 10 different ECG signals. These ECG signals are derived from an
ECG interference template, extracted from different muscles in the shoulder girdle.
The ECG signals differ from each other with respect to the timing of the heart
beats and waveform of the ECG interference. The amplitude of the different test
signals is normalised. 1000 simulation signals are derived using equation 3.9. λm is
proportional to the muscle contraction and ranged from 2 (a very small contraction)
to 10 (a large contraction). This factor λm starts from 2 to ensure the presence
of a muscle contraction within the simulation signal. λc is a factor proportional
to the amount of ECG interference on sEMG signal. The value of λc ranged from
0 (no interference) to 10 (a large interference of ECG on the sEMG signal). The
indices k and l select one of the 10 EMG respectively ECG channels. For each
simulation, the moment of contraction, λk, λc, k and l are randomly chosen.

sigi(t) = ref(t) + λm · EMGk(t) + λc · ECGl(t) (3.9)

To validate, the total contraction time detected by the algorithm is plotted. This
time was, by design, fixed to 5s. Figure 3.18 shows the mean contraction time (±
standard error) detected by the algorithm for the 1000 simulations in function of a
changing threshold value. In the threshold range between 3 and 10, the algorithm
estimates the correct contraction time while this is not correct for a higher or lower
threshold value. Therefore, the threshold is fixed to value of 5.

Figure 3.19 shows the outcome of one the simulations with λc = 7 and λm = 4.
The top figure shows that the ECG signal is overwhelming the sEMG signal. The
RLE signal however is able to enlarge the period of muscle contraction to facilitate
a distinction between rest and contraction. In this specific case, the threshold is
set to 5.

Real Life Examples

Figure 3.20 shows an example where the active muscle is distinguished from the
muscle in rest using this RLE algorithm. In the top chart, a raw EMG signal
is shown with two large contractions and several smaller contractions in between.
The ECG interference signal was not removed from the sEMG signal. The middle
chart shows the RLE equivalent derived from the raw signal. This signal differs
substantially between the rest and active states. The threshold is set to 5 as
derived from the simulations, but the RLE-values range from 1 to over 200. A
clear distinction could be made between a muscle in contraction and a muscle in
rest. The lower chart shows the original sEMG signal with the active/rest state,
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Figure 3.18: The estimation of the contraction time for a changing threshold (log scale).
The mean contraction time ± standard error is plotted.

Figure 3.19: sEMG simulation signal (top), the RLE equivalent (middle) and the
active/rest state on top of the sEMG signal (bottom).
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Figure 3.20: Real life raw EMG signal (top), the RLE calculated from the raw EMG
signal (middle) and the active/rest state of the muscle (below).

estimated from the RLE value, superimposed. The match shows that the algorithm
is able to make a clear distinction between rest and active states. Figure 3.21
enlarges on a period with several small active periods. Even with the presence of
the ECG contamination in the raw signal, the algorithm is still able to distinguish
very small periods of muscle activity from periods of rest, which are very difficult to
detect with the commonly used thresholding in the time domain. In offline analysis,
the ECG contamination signal can be removed before further analysis (as described
in section 3.3), but for real-time usage, robustness to the ECG interference signal
makes this a strong algorithm.

An application of this algorithm is to estimate the baseline values for the sEMG
parameters, used in this manuscript. The baseline value is defined as the mean
value of the sEMG parameters when the muscle is in rest. For the deltoideus
and the infraspinatus muscle (section 3.2), the estimation of the rest period is
straight forward: when no physical activity is imposed, these muscles are at rest.
The behaviour of the trapezius muscle however is more complex. In section 3.4,
the spontaneous activity of several muscle fibers of the trapezius muscle were
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Figure 3.21: Shows an enlarged part of figure 3.20. 4 separate periods of muscle activity
can be distinguished from rest, even with the presence of ECG interference.

described and in the literature, several studies report on muscle activity of the
trapezius muscle in stress situations [6, 17, 50]. Therefore, we need to estimate
the periods of rest using the sEMG information. The analysis is performed on
the data of stressexp 1 (section 3.2.1) and an overview is presented in table 3.5.
For each of the 6 muscles of the 28 subjects, the periods of true muscle rest are
calculated from the sEMG signals using this algorithm. This mean RMS value
of the rest sEMG signals is compared with the mean RMS value during the first
rest period in the protocol, which is often used as the baseline session and where
rest in the muscles is supposed, and with a manual estimation of the rest level.
Periods without muscle activity are identified visually in the sEMG signals and the
mean RMS value of the sEMG signals during this period is calculated. The values
in the table are presented as percentage of the maximal voluntary contraction of
each individual muscle. The table shows that there is no statistically significant
difference between the value estimated using the RLE algorithm and the value
which is estimated manually. These values differ from the RMS value estimated
via the baseline session. Figure 3.22 shows the mean RMS value of each rest
period (R1 is used as the baseline value in table 3.5) as percentage of the MVC,
together with the RLE estimated value for the 6 muscles of interest (deltoideus,
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Figure 3.22: RLE value versus mean RMS value for 28 subjects of stressexp 1 during
4 rest periods (Delt=m. deltoideus; IS=m. infraspinatus; Trap=m. trapezius; L=left;
R=right).

infraspinatus and trapezius left and right).

The figure confirms that the deltoideus and infraspinatus are in rest during the
periods where rest is assumed. There is no difference between the rest level,
estimated via RLE and the muscle activity during the rest periods. The results
of sEMG analysis of the trapezius muscle confirm the behavior of the trapezius
muscle: although no postural change is desired during the rest periods, there is
muscle tension present. The rest periods 2 and 4 are the two rest periods following
a physical load. These two periods show more muscle activity compared to the
other two rest periods. These results reveal the need for a signal based estimation
of the rest level of each muscle.

3.5.4 Discussion

In this section, an algorithm is presented that is able to distinguish between an
active muscle and a muscle in rest based on the frequency content. There is clear
distinction between the frequency content of a sEMG signal from a muscle in rest
and a muscle in contraction and a feature could be extracted. We showed that
with setting a threshold on this feature, we can easily differentiate between the
two states. A feature of this type is beneficial for studies where the muscle of
interest is very difficult to relax. We showed that there was muscle activity of the
trapezius muscle during rest periods where no postural need of the muscle activity
was present.

In several studies, the rest level is nowadays estimated when the sEMG amplitude
is below a certain percentage of a maximal voluntary contraction (MVC). In
literature, these values range from 1% to 5% of MVC [32, 139, 143, 167]. This
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Table 3.5: Estimation of mean RMS value of the rest sEMG signals using the baseline (base), the Rest Level Estimation algorithm
(RLE) and manual estimation (real) of the 6 different muscles in stressexp 1 for the 28 subjects. (Values expressed in %MVC).

Deltoideus R Infraspinatus R Trapezius R Trapezius L Infraspinatus L Deltoideus L
subj base RLE real base RLE real base RLE real base RLE real base RLE real base RLE real

1 0,79 0,79 0,79 1,05 1,02 1,02 2,46 1,29 1,23 2,39 1,89 1,89 1,48 1,48 1,48 1,68 1,67 1,67
2 0,50 0,48 0,48 0,44 0,36 0,36 1,43 0,52 0,52 1,13 0,14 0,14 0,49 0,46 0,46 0,44 0,43 0,43
3 0,74 0,71 0,71 0,93 0,90 0,40 1,48 0,89 0,89 0,75 0,32 0,31 0,70 0,68 0,68 1,19 1,19 1,19
4 0,32 0,31 0,31 0,45 0,44 0,43 1,44 0,33 0,32 0,86 0,13 0,13 0,48 0,46 0,46 1,20 1,21 1,20
5 0,37 0,58 0,57 0,75 0,73 0,73 0,70 0,68 0,69 0,37 0,39 0,39 0,84 0,84 0,84 0,38 0,37 0,37
6 0,77 0,68 0,68 0,69 0,64 0,65 0,41 0,22 0,22 0,78 0,81 0,81 0,54 0,56 0,54 0,67 0,68 0,67
7 0,37 0,38 0,37 0,55 0,46 0,46 0,19 0,21 0,22 0,26 0,26 0,26 0,31 0,31 0,31 0,37 0,37 0,37
8 0,71 0,61 0,61 1,22 1,06 1,06 3,19 3,00 3,01 0,71 0,68 0,68 2,02 1,99 1,99 0,89 0,85 0,85
9 0,51 0,50 0,51 1,33 1,26 1,27 1,09 1,10 1,09 0,42 0,42 0,41 0,44 0,43 0,44 0,32 0,31 0,31

10 1,00 1,00 1,00 0,64 0,64 0,65 0,88 0,88 0,88 0,76 0,76 0,75 0,76 0,76 0,77 0,94 0,95 0,94
11 0,62 0,62 0,62 0,40 0,40 0,40 0,97 0,99 0,98 0,31 0,31 0,31 0,60 0,60 0,60 0,82 0,81 0,81
12 1,84 1,83 1,83 2,42 2,31 2,30 9,35 3,08 3,08 4,81 1,85 1,86 2,49 2,10 2,10 2,18 2,16 2,16
13 0,69 0,71 0,69 0,48 0,50 0,47 1,07 1,07 1,07 0,91 0,91 0,92 0,81 0,85 0,85 0,54 0,54 0,54
14 0,58 0,59 0,57 0,42 0,44 0,42 0,41 0,42 0,42 0,53 0,55 0,53 0,58 0,58 0,58 1,24 1,27 1,24
15 0,68 0,68 0,68 0,72 0,74 0,72 1,13 0,33 0,32 1,19 0,67 0,67 0,72 0,76 0,76 0,64 0,64 0,64
16 0,58 0,58 0,57 0,62 0,61 0,61 0,45 0,46 0,46 0,78 0,73 0,75 1,05 1,06 1,04 1,05 1,01 1,01
17 0,48 0,47 0,47 0,16 0,18 0,18 1,52 1,57 1,52 2,77 2,85 2,77 0,21 0,24 0,21 0,42 0,43 0,44
18 0,49 0,51 0,50 0,82 0,77 0,77 0,47 0,43 0,43 0,38 0,34 0,34 0,73 0,71 0,71 0,65 0,64 0,63
19 1,06 1,01 1,01 1,71 1,64 1,65 1,57 1,47 1,47 0,96 0,93 0,93 2,72 2,79 2,72 1,45 1,49 1,45
20 1,17 1,15 1,16 0,77 0,71 0,72 0,34 0,33 0,33 0,47 0,44 0,44 2,11 1,98 1,99 0,98 0,98 0,98
21 0,79 0,72 0,72 0,25 0,23 0,23 0,54 0,90 0,49 1,16 1,09 0,93 0,29 0,28 0,28 0,56 0,51 0,51
22 0,13 0,15 0,13 0,66 0,42 0,42 1,98 0,28 0,28 0,18 0,18 0,18 1,62 1,66 1,66 1,26 1,26 1,26
23 0,32 0,30 0,30 0,69 0,58 0,58 0,49 0,19 0,19 2,33 0,31 0,31 0,43 0,43 0,42 0,36 0,38 0,36
24 0,49 0,49 0,49 0,40 0,41 0,41 0,58 0,42 0,42 0,40 0,32 0,32 0,56 0,59 0,56 0,54 0,51 0,51
25 0,92 0,95 0,92 0,37 0,34 0,34 0,76 0,75 0,75 0,27 0,28 0,27 0,39 0,39 0,39 2,24 2,05 2,05
26 0,18 0,17 0,16 0,29 0,29 0,28 0,22 0,23 0,23 0,54 0,52 0,52 0,27 0,26 0,26 0,52 0,50 0,50
27 0,48 0,49 0,47 0,36 0,37 0,36 0,20 0,19 0,19 0,13 0,13 0,13 0,40 0,39 0,39 0,67 0,58 0,59
28 0,39 0,31 0,31 1,06 0,71 0,71 1,89 0,51 0,51 2,78 1,17 1,17 1,17 1,21 1,21 0,65 0,46 0,46
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approach has two drawbacks: the first one is that there is a need for a reference
measurement. A second drawback is that there is a fixed threshold, which is
fixed before the study. When analyzing the signals during our experiments, we
found values ranging from 0.3 to 3.5% MVC making the use of a fixed threshold
unreliable. A data driven approach as described here is beneficial.

In the literature, several techniques that differentiate between rest and a muscle
contraction exist [18, 59, 93, 140, 151]. These techniques use the amplitude
information or statistical information of the sEMG signal to find the initiation
of a muscle contraction. However, the application of these techniques is different:
the main objective of these techniques is to estimate an accurate initiation of the
muscle contraction which occurs in response to a stimulus. These methods are
optimised to find this initiation after a period of rest. These methods have a
very good time resolution and are more accurate for this specific application than
the RLE method that looses the time resolution by using a windowed Fourier
transform. As these methods need a reference rest period, they are not applicable
in the presented applications.

The presented algorithm is computationally not complex and has therefore
potential to be used in real time. A real time application where the algorithm can
be applied is the battle against musculoskeletal disorders. Several studies showed
that muscle recuperation and rest is essential in the prevention of musculoskeletal
disorders [32, 67, 115]. This method can track in time the amount of rest compared
to the muscle activation or count the number of EMG gaps [167].

3.6 Stress: Data analysis

In the last section of this chapter, the most important results of the interpretation
of the sEMG signals during the stress assessment tasks (see section 3.2) are
presented. The additive effect of a mental load on the muscle activity in the
shoulder girdle is presented in the situation with and without an extra physical
load. Afterwards, an indication of muscle fatigue is presented. We studied the
individual sEMG profiles during the different subtasks.

Rest versus mental load

Comparing EMG amplitude (RMS) for MT1 and RLE values for the first
experiment showed a significant difference (p<0.05) for both trapezius muscles (see
figure 3.23). The RLE value is selected to see the effect of the mental task on the
total muscle activity as no muscle activity is expected for postural changes. These
results are confirming the results in previous studies [98, 95] that the trapezius
muscle is sensitive to a mental load and leads to an activation of this muscle.
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Figure 3.23: Significant differences (*) between EMG amplitude (RMS) for MT1

and RLE value for the data of stressexp 1(28 subjects; Delt=m. deltoideus; IS=m.
infraspinatus; Trap=m. trapezius; L=left; R=right).

Postural load versus combined mental and postural load

Conform to the findings that there is an increase in muscle activity in periods of
mental load when the muscle should be in rest, we expected muscle activity during
the combined mental and physical load (MPT) to be higher than activity during
physical load (PT). Table 3.6) shows the results of the analysis of one muscle and
one parameter during both experiments, but similar conclusions hold for the other
parameters (ACT, MPF) and the other muscles. The results of the analysis of
the stressexp 1 where the mental task was combined with a a shoulder abduction
of 45◦ with stretched arms showed no significant change in muscle tension. The
possible additive effect of the mental load was assumed to be low and was probably
overshadowed by the muscle activity for the postural load. Therefore, stressexp 2
was deducted and the protocol was modified to answer this question. The postural
task was to click a computer mouse, emulating a lower postural load more similar
to office tasks. The new protocol also addressed earlier design issues: condition
times were consistent, and the rest period was sufficiently long for subjects to relax
muscles. The results for the second experiment were similar to the results of the
first one. At a group level, muscle activity did not differ significantly for a postural
task with or without a mental task for both the left and the right shoulder muscles.
So no evidence could be found about the additional effect of the mental stress as
induced with our mental task on the muscle activity.

Muscle fatigue

In the second experiment, the postural load for the three parts of the Trapezius
muscle was very low during the entire test. During the clicking task, the right
Trapezius muscle had a stabilizing function. The left arm was resting on the table
during rest and active periods. Muscle fatigue was not expected to occur due
to the low postural load. However, analysis of EMG signals showed that 13 out
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Table 3.6: Results of the comparison between the RMS parameter during postural load
and combined mental and postural load for both stress experiments.

Stressexp Muscle Parameter Conditions p-value
1 Trap D L RMS PT1 - MPT1 0.2141
1 Trap D R RMS PT1 - MPT1 0.1854
2 Trap D L RMS PT2 - MPT12 0.9818
2 Trap D L RMS PT2 - MPT22 0.4255
2 Trap D L RMS MPT12 - MPT22 0.4662
2 Trap D R RMS PT2 - MPT12 0.3624
2 Trap D R RMS PT2 - MPT22 0.0842
2 Trap D R RMS MPT12 - MPT22 0.0976

Trap D L: m. Trapezius pars descendens Left
Trap D R: m. Trapezius pars descendens Right

Figure 3.24: Percentage subjects with muscle fatigue in specific muscles after specific
tasks during experiment 2. MPT1 = first mental and postural task: MPT2 = second
mental and postural task: PT = postural task.

of 31 subjects (42%) experienced muscle fatigue in one or more muscles after 42
minutes. This phenomenon not only occurred in the right more active muscles,
but especially in the left Trapezius muscle. Figure 3.24 shows the percentage of
test subjects that showed signs of muscle fatigue after each individual task for the
different muscles.

Muscle fatigue is defined [143, 150] as a variation of different sEMG parameters:
a linear increase of the amplitude parameter (RMS), a linear decrease of the mean
power frequency (MPF) and a constant activity parameter (ACT) and this was
identified visually.

These observations are indications that not only the postural task, but also the
extra mental effort plays a role. Muscle fatigue is a good indicator of potential
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Table 3.7: Most important p-values of the Spearman correlation analysis between the
mean sEMG parameters (RMS: Root Mean Square, ACT: activity and MPF: Mean Power
Frequency) and the questionnaires (PANAS, PSS: Perceived Stress Scale and DLC: Daily
Life Complaints list) during stressexp 2.

Muscle Side Questionnaire Parameter Condition p-value
Trap T Right PANAS RMS Rest 0.0711
Trap T Left PANAS MPF PT 0.0621
Trap D Left PANAS MPF MPT1 0.0934
Trap D Left PSS RMS PT 0.0966
Trap D Left PSS ACT PT 0.0897
Trap D Left PSS RMS MPT1 0.0651
Trap D Left PSS ACT MPT1 0.0651
Trap T Right DLC RMS Rest 0.0834
Trap A Right DLC RMS Rest 0.0025
Trap A Right DLC RMS PT 0.0130
Trap A Left DLC ACT PT 0.1109
Trap T Left DLC RMS MPT2 0.0818

Trap D: m. Trapezius pars descendens
Trap T: m. Trapezius pars transversus
Trap A: m. Trapezius pars ascendens

overload of the muscle fibers.

Correlation of EMG and questionnaires

Table 3.7 shows the most important p-values of the Spearman correlation analysis
between the mean sEMG parameters per condition and the questionnaires of
stressexp 2. There was no evidence that sEMG signals were related to results
from the questionnaires (PANAS, Relaxation inventory, Perceived Stress Scale,
Daily life complaints list). The questionnaires refer to perceived stress levels and
complaints over a longer period of time. The test protocol was designed to induce
acute stress. It is clear that these questionnaires measure other aspects of stress
than sEMG.

Individual sEMG profiles

On group level, no statistically significant difference could be identified for the
muscle activity on the trapezius muscle during the different mental stress and
physical load conditions. To look for individual differences, the video recordings of
the stress test (stressexp 2) were analysed visually by two professional ergonomical
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scientists. The video images were labeled with the presence of postural changes,
muscle reactions and signs of stress, that were not related with the physical
activity. Afterwards, the occurrence of these reactions were compared with the
sEMG data of the left and the right trapezius muscle, pars descendens. Figure
3.25 shows different sEMG profiles. The RMS-values during the 6 minutes per
condition are plotted on top of each other as percentage of the Maximal Voluntary
Contraction. For some subjects, sEMG signal patterns matched with what was
actually happening at a particular moment of the test, as viewed in the video
images. For other subjects, however, there was a clear discrepancy between the
sEMG signals (e.g. indicating much activity) and what was actually happening as
viewed in the video images (e.g. no change of posture and no movement). This
means that the muscle builds up muscle tension without the benefit for the posture
of the test subject. An example of the latter activity is the single motor unit firing,
as described in section 3.4. In this speicific case, only one motor unit was firing,
indicating that only a few muscle fibers are contracting. These few muscle fibers
are insufficient to influence the posture significantly.

When comparing the sEMG signals of the left and the right trapezius muscle,
several subjects showed an increase in sEMG activity in the left muscles during
the postural task, although the clicking movements during both PT and MPT were
the same. These subjects may have become bored by the clicking task itself and
therefore showed stress signals in the EMG. The subjects did not make random
movements or change their posture during the test.

On the other hand, the video analysis revealed that most subjects have repeating
typical stress reactions of their body which differ amongst the different test
subjects. these reactions were not limited to the trapezius muscle. Even more,
some subjects showed reactions on other muscles, but not on the trapezius
muscle. Different reactions were seen in the face where some subjects were
chewing (masseter and temporalis muscle) and others were frowning there forehead
(frontalis muscle), while others were wobbling with their upper body or with their
legs. Because of the absence of quantitative and qualitative measures of the muscle
activity of these different muscles, no further analyses could be performed to study
this large interindividual differences. But the observation of this differences in
muscle reaction could be a interesting basis for a next study.

Discussion

The two stress experiments differed in the level of postural load imposed. For
stressexp 1, test subjects performed a heavy 6-minute shoulder abduction with
and without a mental task. Muscle tension did not increase significantly with the
addition of a mental task. The possible additive effect of the mental load was
assumed to be low and was probably overshadowed by the muscle activity for the
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Figure 3.25: 4 profiles of the muscle activity of the different tasks for stressexp 2.
The RMS-values during the 6 minutes per condition are plotted on top of each other as
percentage of the maximal voluntary contraction. The green traces are MPT1 and MPT2,
the red trace is PT and the gray traces are R.

postural load. In stressexp 2, the postural task was to click a computer mouse,
emulating a lower postural load more similarly to office tasks. The new protocol
also addressed earlier design issues: condition times were consistent, and the rest
period was sufficiently long for subjects to relax muscles. The results for stressexp
2 were similar to the results of the first one. At a group level, muscle activity did
not differ significantly for a postural task with or without a mental task for the
left shoulder muscles.

The sEMG parameters of the trapezius muscle revealed no direct relation with
an extra imposed mental task. However, this muscle showed spontaneous activity
without any beneficial effect on the posture. Signs of muscle fatigue after these
tests were present even after the very small postural load that could lead to
exhaustion and possible to MSD afterwards. Therefore, the monitoring of the
trapezius muscle in the battle against MSD is of importance.

On an individual basis, there were differences in muscle reaction between the
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test subjects on the different conditions with and without a mental load. On the
trapezius muscle, different muscle contraction patterns could be identified between
the different subjects. Some subjects showed an increase in muscle activity during
the condition with a postural load compared to the condition where a combined
physical and mental load was applied. This could reveal that these subjects were
bored during the postural load, imposing another type of stress to the subjects.
Another explanation could be that the mental task, as imposed here, did not
initiate the same amount of mental stress on the subjects. There were subjects
that have a very strong stress reaction by solving these tasks, while others were
not stimulated to solve these tasks as good as possible. Several subjects showed
an increase in muscle activity during the first rest period, which means that they
were not at ease at the beginning of the experiment. In general, the reactions of
the muscle activity of the trapezius were so individual and so different between
the different subjects that, on group level analysis, no statistically significant
differences could be identified. We can conclude that the analysis of solely the
trapezius muscle activity as physiological measure is insufficient to see the effect
of mental stress on the muscle activity.

In the literature, the trapezius muscle is the most important muscle that has been
linked with mental stress reactions and the aim of the European project ConText
was to develop a biofeedback system using physiological information distributed
by this muscle, but research articles about stress are not limited to this muscle.
The video analyses during the stress experiments revealed that muscle reactions
also involve other muscle groups. To have a broader view on the muscle reactions
due to stress, other muscles of the body should also be included in future studies:
in particular, different face muscles (masseter, frontalis and temporalis muscle),
the paravertebral muscles and the multifidus muscle.

In summary, the results in this section reveal the need for individual analyses or at
least for smaller clusters in the population, to identify which muscles are activated
and quantify their muscle activity to differentiate between stress and conscious
muscle contractions.

3.7 Conclusion

The major source of interference (i.e. cardiac activity) on the sEMG signals need
to be removed. Therefore, two recently developed single channel approaches of
independent component analysis (ICA) are used to remove the ECG signal and
the performance is compared with the standard technique to remove the ECG
interference signal. The two techniques are based on the idea to decompose a single
measurement using wavelets or ensemble empirical mode decomposition before
applying ICA on these decompositions. When the corresponding ECG signal is
not available, EEMD-ICA has the best performance compared to wICA and yields
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similar performance as the template subtraction for higher SNR, while for lower
SNR, EEMD-ICA is significantly better than template subtraction and slightly
better than wICA. We can conclude that for offline use, when the calculation time
is not important, EEMD-ICA has the best performance. When the ECG channel
is present, the template subtraction is preferable.

sEMG signals of the trapezius muscle showed an interesting specific pattern during
the stress assessment experiments. In approximately 65% of the subjects, for both
experiments, spike trains appeared in the signals. We have evidence that these
spike trains are the continuous firing of a single motor unit. This indicates a very
low and subconscious muscle contraction that induces no postural change. We
could not relate this pattern directly to stress, as it appeared randomly in the
right and left muscles, during rest and the mental task. This could suggest that
the presence of a mental load restrains the muscle from relaxing and recuperating.
Frequent prevalence of single motor unit firing can lead to overload and exhaustion
of these muscle fibers, resulting in pain and tissue damage. An algorithm to detect
spike trains is capable of detecting single motor unit firings. The algorithm, based
on an energy operator and correlation calculation, showed an excellent performance
as it reaches a sensitivity of 100% and a specificity of 94,8%.

An algorithm to detect the absolute rest level of a muscle, the Rest Level
Estimation (RLE), is developed. This algorithm uses a feature based on the
frequency properties of the sEMG signal during contraction and in rest. Via
easy thresholding, this algorithm is able to differentiate between the signals of the
muscle in rest and in contraction. The RLE also has other useful applications.
As it measures the rest level of a muscle in an objective way, without a reference
measurement, we are able to distinguish in a daily task between the active and
rest state of the muscle. The RLE can therefore be used in a biofeedback system
to alert users if there are too few rest periods, and in the long term, help prevent
musculoskeletal disorders of the neck and shoulder.

The two experiments, used for these analysies differed in the level of postural
load imposed. For stressexp 1, the test subjects performed a heavy 6-minute
shoulder abduction with and without a mental task. Muscle tension did not
increase significantly with the addition of a mental task. The possible additive
effect of the mental load was assumed to be low and was probably overshadowed
by the muscle activity for the postural load. For stressexp 2, the postural task was
to click a computer mouse, emulating a lower postural load more similarly to office
tasks. The results for the second experiment were similar to the results of the first
one. At a group level, muscle activity did not differ significantly for a postural
task with or without a mental task for the left an right shoulder muscles. On an
individual basis, there were differences in muscle reaction between the test subjects
on the different conditions with and without a mental load. There are subjects
that have a very strong stress reaction by solving the mental tasks imposed in
the experiments, while others are not stimulated to solve these tasks as good as
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possible. Several subjects showed an increase in muscle activity during the first rest
period, which means that they were not at ease at the beginning of the experiment.
In general, the reactions of the muscle activity of the trapezius are individual and
different along the subjects that no statistically significant differences could be
identified. The analysis of the trapezius muscle activity as physiological measure
is insufficient to see the effect of mental stress on the muscle activity. This is
confirmed via video analysis, which reveals that other muscle groups also show
muscle activity during periods with stress. To have a broader view on the muscle
reactions due to stress, other muscles of the body should also be included in
future studies: different face muscles (masseter, frontalis and temporalis muscle),
the paravertebral muscles and the multifidus muscle.

The results reveal the need for individual analyses or at least for smaller clusters
in the population, to identify which muscles are activated and quantify their
muscle activity to differentiate between stress and conscious muscle contractions.
The complexity of the stress system and the interindividual physiological reaction
profiles require algorithms that are applicable on an individual basis.



Chapter 4

Heart Rate Variability: analysis
applied to stress monitoring

In this chapter, the results of the HRV analysis are discussed. In section 4.2, the
HRV analysis applied on the two stressexperiments (described in section 3.2) are
presented. The effect of the mental and the physical load to the different HRV
parameters is studied next to the additional effect of a mental load on a physical
task. Besides the traditional linear HRV measures, time-frequency analysis (TFA)
is used. TFA has the advantage over the traditional HRV measures that it enables
continuous tracking of different HRV parameters to gain extra insight in the effect
of the mental load within one task. In a next section 4.3, an additional study
is described where the effect of anxiety, which is quantified using psychological
questionnaires, is reflected in changes of the HRV parameters during day-night
comparisons and a stress assessment test. In a final section 4.4, the close link
between HRV and respiration will be elaborated.

4.1 Introduction

Stress is a psychophysiological phenomenon that changes the physiological balance
of, amongst others, the autonomic nervous system (ANS) [148, 174]. The
ANS is divided into a sympathetic and parasympathetic or vagal branch. Both
components operate simultaneously and balance each other dynamically in normal
conditions. When a person is exposed to a stressor, the sympathetic system
becomes more activated via the locus coeruleus, resulting in the secretion of the
neurotransmitter norepinephrine [129]. The activation of the sympathetic system
innervates the production of epinephrine in the adrenal medulla. In addition,

109



110 HEART RATE VARIABILITY

the parasympathetic system is shut down. This brings the body in an arousal
state, called the fight or flight reaction since Walter Cannon’s work on the fight-
or-flight response in the 1930s [166]. This result in changes in several physiological
systems such as an increase in heart rate (HR) via the stimulation of the sinus
node of the heart. When the stressor disappears, the vagal system takes over
and the sympathetic activation disappears. A message is sent to the medulla,
which responds by releasing a hormone, called acetylcholine. This hormone slows
down the heart rate, delaying the muscle contractions of the heart. The stress
reaction is hormonal, neurological, cardiovascular, metabolic and muscular [89].
Chronic stress can lead to an overload or exhaustion of these physiological systems.
Frequently used biomarkers for detection are blood pressure, heart rate variability,
catecholamine and cortisol secretion.

Heart rate variability (HRV) refers to alterations in heart beat time-intervals
and provides quantitative markers of autonomic regulation [1, 165]. Moreover,
it is a simple and powerful noninvasive methodology having enormous practical
advantages with a minimum of technical constraints, which makes it useful in many
applications. Therefore, HRV has been used to examine the responses to mental
and physical demands on the ANS. Expressed physical tasks strongly influence
HRV indices related to ANS as shown for static handgrip at 25% of maximal
voluntary contraction (MVC) [118], bicycle exercise [123] or static leg extension
at 30% MVC [65]. Mental stress in laboratory experiments (cognitive demands,
mental arithmetic) has been associated with decreased HRV, indicating a disturbed
ANS [111, 149, 105, 180].

4.2 Instantaneous changes in heart rate variability

during physical, mental and combined stress in
laborartory environment

4.2.1 Objective

The results of the HRV analysis on the two stress experiments, called stressexp
1 and stressexp 2 in section 3.2, are presented in this section. The design of the
experiments allow us to answer two research questions: ’What is the effect of a
mental load on the different HRV parameters, revealing information of the ANS?’
and ’Is there an additional effect on the different HRV parameters of a mental load
on top of a physical load?’.

The goal of this study was to evaluate the changes in HRV parameters due to
a specific physical, mental or combined load. More specifically, the difference
in effect between mental load and physical activity, in literature known to be
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methodologically difficult [138], is studied. Many studies only focus on either
physical or mental load, but only a few consider both [60, 71]. In addition, the
effect of the combined physical and mental demand on the HRV parameters was
examined and compared with the changes during the single task. However the
relative contribution of mental and physical stress on HRV parameters is still not
completely clear. We hypothesize a bigger change of the HRV parameters, and
therefore autonomic modulation of heart rate, in the combined task compared to a
single task. The effect of applying a similar mental task at different time instances
is investigated by looking at the differences in HRV parameters during the two
periods of combined physical and mental load.

While almost all previous studies were either interested in the relation between
HRV and a questionnaire based stress level or the influence of imposed demands
on HRV, here, the time evolution is included using time-frequency analysis. Time-
frequency analysis, as applied here, was rarely used in literature, although it
enables the study of trends within the same condition or transitions between
different conditions. Moreover, it enables the comparison of these trends within
one condition as well as between the various conditions.

The results of stressexp 2 have been accepted for publication as journal paper in
European Journal of Applied Physiology [161]. The results of both experiments
have also been presented at the 4th European Congress of the International
Federation for Medical and Biomedical Engineering (ECIFMBE) in Antwerp in
2008 and at the 6th International Workshop on Biosignal Interpretation (BSI) in
New Haven in 2009 and resulted in a paper that is published in the corresponding
proceedings [160, 171]. The results of stressexp 1 have been submitted in
revised form to the Journal of NeuroEngineering and Rehabilitation [172] in close
collaboration with my colleague Steven Vandeput.

4.2.2 Methodolgy

Data

During stressexp 1, the test subjects underwent three active periods while
performing a task with respectively a physical (PT1), a mental (MT1) and a
combined physical and mental load ((MPT1)). The three tasks were randomised
and followed by a rest period. After each active period, the test subjects reported
their perceived tension. The physical task was a shoulder abduction and the
mental task consisted of solving the home version of the mensa test.

The stressexp 2 had one physical task (PT2) and two times a mental one in
combination with a physical task (in order of appearance MPT12 and MPT22).
The order of the tasks was fully randomised. Each active task was followed by a
rest condition. Each condition had an equal duration of 6 minutes. The physical
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task during this experiment was closer to an office task and consisted of clicking
with the mouse. The mental task was solving complex calculations.

When referring to the tasks of one of the two experiment explicitely, the tasks
will be denoted with the number of experiment (PT1, MT1, MPT1 and R1 for
stressexp 1; PT2, MPT12, MPT22 and R2 for stressexp 2). The more general
statements that refer to both experiments will be denoted without a reference to
the experiment.

HRV analysis

After deriving the tachogram from the ECG signal, the data was checked manually
for missing and ectopic beats and extra ventricular beats were replaced by a 20%-
filter. Linear HRV parameters were obtained in agreement with the standards of
measurement, proposed by the Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiology [165]. Mean,
SDNN, RMSSD and pNN50 were calculated in the time domain. After resampling
the tachogram at 2 Hz, the power spectral density (PSD) was computed by using
fast Fourier transformation. In the frequency domain, LF, HF, LFnu, HFnu
and LF/HF were calculated. The length of the different conditions in the first
experiment is variable. As some HRV parameters, such as SDNN, depend on the
recording length, a comparison between conditions can only be done by calculating
each HRV parameter on segments of equal duration. Segments of 2 minutes during
the first stress experiment were selected, which is the duration of the shortest
condition in the dataset. The HRV parameters of all rest periods are averaged.
This problem was not present for the analysis of the data of the second experiment
as the length of the different conditions was equal for all conditions (duration of 6
minutes).

Additionally, to overcome the possible non-stationarity and to describe the changes
in HRV spectra during transients, time-frequency analysis (TFA) is used by
applying continuous wavelet transformation (CWT). The Morlet wavelet is used as
the literature showed that this is an appropriate function to study HRV [90]. TFA
enables to track LF and HF parameters reliably over time: the power as well as
the instantaneous frequency [25] in each frequency band. For the first experiment,
the duration of the different conditions is not consistent, which complicates the
TFA. Therefore, the analyses are limited either to the 4 first minutes or to the
length of the condition per test person. This means that the first minute recordings
are available from all the test subjects, but this is not the case for the following
minutes. For the rest condition, the mean is taken over each minute from the four
rest conditions. To have a better representation, the standard error will be used
which is a better estimation of the error when the number of test subjects per
group is different.
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Statistical analysis

Statistical analysis on the linear HRV parameters was executed using the
nonparametric Friedman test adjusted for possible between-subject effects to test
whether the different conditions (experiment 1: R1, PT1, MPT1 and MT1 and
experiment 2: R2, PT2, MPT12 and MPT22) affected the HRV parameters. Post
hoc Tukey contrasts were used in order to explore further differences between
two conditions, taking into account multiple testing. P < 0.05 was considered
statistically significant.

Several analyses are performed for the time frequency analysis of the first
experiment. In a first analysis the effect of the executed task within one condition
is studied. Therefore, the first and the fourth minute per condition are compared
pairwise with the Wilcoxon Signed rank test. In addition, we look for the effect of
the executed task within one condition by analyzing the differences between the
conditions in the first and also in the fourth minute. The analysis of the first and
the fourth minute is performed analogously as the two minute segments of the
traditional HRV measures described in this section.

To statistically characterize the differences between the active conditions in the
time-frequency analysis in the second experiment, a minute-to-minute analysis
is performed, analogously to Orini et al [116]. At each time instant, the
nonparametric Wilcoxon signed rank is used to find pairwise differences between
two conditions, resulting into a continuous estimation of the p-value. The resulting
time series allows assessing the time at which conditions start to differ and for how
long this difference is significant. As such, insight in the additional effect of the
mental load is revealed. P < 0.05 was considered statistically significant.

4.2.3 Results

Stressexp 1

A typical tachogram with indication of the different conditions is given in Figure
4.1. During a first visual inspection of the signal, a clear transition between the
different conditions can be noticed. The condition had a significant (p<0.0001)
effect on mean RR of which the boxplot is shown in figure 4.2. Contrast analysis
revealed a significantly higher mean RR in R than in the active conditions MT1,
PT1 or MPT1 (all p<0.001) as could be expected from figure 4.1. The heart rate
was highest during MPT1 (p<0.01 vs. PT1 and p<0.05 vs. MT1) followed by
MT1 (p=0.24 vs. PT) and PT1. Results on HRV showed that condition had no
significant effect on SDNN for the first two minutes (p=0.34). SDNN, shown in
figure 4.3, provides information about the total variability of heart rate control.
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Figure 4.1: Typical tachogram of a subject with indication of the different experimental
conditions for the first experiment.

Figure 4.2: Boxplots of mean RR intervals for the different conditions of the first 2
minutes of the first experiment.

Statistically significant differences between conditions were found for rMSSD
(p<0.0001), pNN50 (p<0.001), LF (p<0.001), HF p<0.0001). Figure 4.4 presents
the results for rMSSD, which reflects vagal modulation of ANS as pNN50 and HF
do according to the literature. These three parameters showed similar evolutions
as expected. The differences are quasi identical to meanRR, namely significantly
higher in R1 compared to PT1, MT1 and MPT1. In addition, those parameters
were significantly lower in MPT1 compared to PT1. LF/HF, characterizing the
sympathovagal balance is depicted in figure 4.5. Statistics reveal a significantly
increased MPT1 compared to the other three periods.

Figure 4.6 shows a typical time series of one subject for HF power and LF/HF. This
figure visualizes changes in these parameters within and between the conditions.
The time series giving the instantaneous frequency in the high frequency band
of the same subject is also presented in the lower plot of figure 4.6 reflecting
fluctuations between 0.22 and 0.26 Hz. Especially during MT, an increased HF
frequency is observed.
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Figure 4.3: Boxplots of SDNN (total heart rate variability) for the different conditions
of the first 2 minutes of the first experiment.

Figure 4.4: Boxplots of RMSSD (vagal autonomic modulation) for the different
conditions of the first 2 minutes of the first experiment.

Figure 4.5: Boxplots of LF/HF (sympathovagal balance) for the different conditions of
the first 2 minutes of the first experiment.
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Figure 4.6: Typical evolution of (a) instantaneous HF power (grey line) and LF/HF
ratio (black line) over time and (b) instantaneous frequency in the HF band with indication
of the different conditions (R = rest, PT = physical task, MT = mental task, MPT =
mental and physical task combined).
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Figure 4.7 shows the time series of all the subjects for HF, LF, LF/HF and fHF.
The time series of the mean (± standard error) are given for the 4 minutes per
condition to see the evolution. In addition, Table 4.1 shows the mean value of
the different time-frequency parameters for the 4 conditions at the first and the
fourth minute. The results of the statistics are also included in this table. An
underlined value indicates a statistically significant difference with the first minute
of the condition. In addition to this analysis, the first and the fourth minute per
condition are mutually compared and indicated with letters.

The HF time series shows that HF power is statistically significantly higher during
the rest period compared to the three active conditions for the complete 4 minutes.
In the beginning, there are no differences between the three active conditions, but
from minute 3 on the two conditions with physical load have a lower HF power.
However at minute 4, this difference is only statistically significant between PT1

and MT1. Only PT1 has a significant change within the condition. The LF
power during rest shows in the first minute a significantly higher value compared
to the three active conditions. We also see that the LF power during PT1 is
statistically significantly higher compared to the two conditions with the mental
load. Within the condition, these differences disappear. The decrease of LF power
during R was statistically significant. Concerning the sympathovagal balance,
LF/HF shows no difference in the beginning of each condition. After two minutes,
the conditions with the physical load (PT1 and MPT1) show a strong increase.
In minute 3, the LF/HF balance during these two conditions are statistically
significantly higher compared to the beginning of the condition and compared to
the two other conditions without physical load. In the fourth minute, the LF/HF of
PT1 remains high while the LF/HF of MPT1 decreases back to the level of R1 and
MT1. The instantaneous frequency in the high frequency band shows a constant
frequency during the rest period. During MT1, the instantaneous frequency shows
a linear decrease, while it shows a linear increase during PT1. Both changes are
statistically significant from the first till the last minute of the condition. During
MPT1 both effects are combined: a decrease because of the mental load and an
increase because of the physical load, resulting in a constant frequency. In the first
minute, the instantaneous frequencies of both mental conditions are statistically
significantly higher compared to those of the two conditions without the mental
load. Within the conditions, the instantaneous frequency shifts towards a higher
frequency during the physical conditions compared to that of MT1 and R1 in the
fourth minute.

Table 4.2 shows the scores on subjective experiences (tensed, nervous, worried,
calm, happy and relaxed). For three subjective experiences (tensed, happy and
relaxed), the test subject gave significantly different scores during rest compared
to the active conditions. They reported to be more happy, less tensed and
more relaxed during the rest period compared to the MT1, PT1 and MPT1 (not
significant for happy) condition. The subjects also revealed to feel significantly
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Figure 4.7: Mean + standard error of the first four minutes of (a) instantaneous
power in HF, (b) instantaneous power in LF, (c) instantaneous LF/HF ratio and (d)
instantaneous frequency in the HF band. The four conditions are colored: PT = physical
task (black); MT = mental task (red), MPT = mental and physical task combined (green)
and R = rest (blue).
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Table 4.1: Mean value for different time frequency measures of minute 1 and 4 during different conditions (R, PT, MT, MPT) of
the first experiment. (n = 28)

R MT PT MPT
min 1 4 1 4 1 4 1 4

HF 86.51 56.87 89.64 78.33⋆ 85.88 70.73 119.80 ⋆,⋄,† 96.57 ⋆,⋄,†

LF 604.32 603.25 422.85⋆ 416.41 387.34⋆ 547.54 935.92⋆,⋄,† 529.88
LF/HF 29.44 43.71 20.15 20.34 21.42 19.377 28.01⋄,† 20.41⋆

fHF 0.205 0.216 0.217⋆ 0.210⋆ 0.218⋆ 0.219⋄ 0.206⋄ 0.205⋆,⋄,†

⋆ Significant difference with PT (p < 0.05)
⋄ Significant difference with MT (p < 0.05)
† Significant difference with MPT (p < 0.05)

underlined: Significant difference within the condition (p < 0.05)
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Table 4.2: Mean (SD) for scores on subjective experiences during the different conditions
(R, PT, MT, MPT) of the first experiment. Scales ranged from 1 to 4 (1 = not and 4 =
extremely). (n=28).

Variable R MT PT MPT

Tensed 1.66 (0.56) 2.14 (0.65)⋆ 2.79 (0.74)⋆,⋄ 2.54 (0.79)⋆

Nervous 1.52 (0.44) 1.64 (0.73) 1.68 (0.82) 1.79 (0.69)
Worried 1.23 (0.55) 1.46 (0.74) 1.39 (0.69) 1.36 (0.73)
Calm 3.16 (0.61) 2.50 (0.75) 2.21 (0.79) 2.25 (0.75)
Happy 2.88 (0.50) 2.46 (0.79)⋆ 2.25 (0.89)⋆ 2.57 (0.74)
Relaxed 2.95 (0.61) 2.36 (0.62)⋆ 1.79 (0.92)⋆ 1.68 (0.77)⋆

⋆ Significant difference with R (P < 0.05)
⋄ Significant difference with MT (P < 0.05)

Figure 4.8: Typical tachogram of a subject with indication of the different experimental
conditions for the second experiment [161].

more tensed during PT1 compared to MT1.

Stressexp 2

Figure 4.8 shows a typical tachogram of an individual during execution of the
protocol. The different conditions, four rest conditions (indicated with R2) and
three active conditions are indicated in the figure: one physical clicking task
(PT2) and two clicking tasks in combination with the mental arithmetic task
(MPT12 and MPT22). Visual inspection of the tachogram shows a clear transition
between the active and the following rest condition. The time series also reveals
a reduced variability of the heart rate in the three active conditions compared to
the preceding and following rest condition.

The Friedman statistics reveal that the condition has a statistically significant
effect on mean NN, SDNN, rMSSD, pNN50, LF and HF (all p<0.0001). Table 4.3
shows the post hoc contrasts. The mean values and standard deviation for the
different HRV parameters are presented and the pairwise statistically significant
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Table 4.3: Mean values (SD) of different HRV parameters for the four conditions (R,
PT, MPT, MPT) of the first experiment.

Mean(SD) R PT MPT1 MPT2

MeanNN [ms] 863.46(147.98) 821.17(141.18)⋆ 755.44(134.47)⋆,⋄ 803.46(147.98)⋆,⋄,†

SDNN [ms] 46.73(19.48) 35.84(15.26)⋆ 35.40(16.35⋆) 40.41(18.74)⋆,⋄,†

rMSSD [ms] 28.74(16.58) 22.83(14.09)⋆ 19.39(13.77)⋆ 22.94(15.66)⋆,†

pNN50 [%] 31.83(18.73) 27.68(17.00⋆) 26.82(16.10)⋆,⋄ 28.68(18.73)⋆,†

LF [ms2] 868.42(641.04) 522.10(463.72)⋆ 466.87(460.20)⋆ 645.06(600.61)⋄,†

HF [ms2] 1005.48(782.59) 591.50(550.31)⋆ 552.46(427.99)⋆ 615.08(569.34)⋆

⋆ Significant difference with R (p < 0.05)
⋄ Significant difference with PT (p < 0.05)

† Significant difference with MPT1 (p < 0.05)

differences between the conditions are indicated. The post hoc contrasts reveal
that the changes between the rest condition and the three active conditions are
statistically significant for all the HRV measures. SDNN, providing information
about the total variability of heart rate control, was higher during rest compared
to the active tasks. RMSSD, pNN50 and HF, all reflecting vagal modulation of
ANS showed similar behavior and react conform to the literature, i.e. these values
were significantly higher in rest condition (R2) compared to the activity conditions
PT2, MPT12 and MPT22. More interesting are the differences between the three
active conditions. MPT12 has the lowest meanNN, followed by PT2 and MPT22.
All these differences are statistically significant. The total variability (SDNN) is
lower during PT2 and MPT12 compared to MPT22, while mutually there are no
differences. The combined mental and physical task has lower vagal modulation
than the physical task as expected, being significant for pNN50 but not for RMSSD.
More remarkable is that repetition has an effect on vagal modulation as both HRV
parameters are lower during MPT12 than during MPT22. Even more, there is no
difference between MPT22 and PT2, indicating that the additional effect of the
mental load has decreased.

Figure 4.9 shows the time evolution on group level of the power in the low frequency
(a) and high frequency (b) band (respectively LF and HF) and the instantaneous
frequency (c) in the high frequency band (HF). For visualization, the data are
presented via the mean standard error in blocks of 1 minute. The time series of
p-values are presented in figure 4.10.

The PLF power (figure 4.9a and 4.10a,b,c), revealing information of both
sympathetic and parasympathetic activity, is higher during the rest periods
compared to the three active conditions. The evolution of LF power within the
condition is similar for PT2 and MPT22. The time series of the p-values shows that
although the evolution of MPT22 and PT2 is similar, the LF power is significantly
higher in MPT22 compared to PT2 (figure 4.10b) for almost the complete duration
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Figure 4.9: Time evolution of different parameters during the second experiment, indicated as mean ± standard error, of the
power in the low frequency (a) and high frequency (b) band (respectively PLF and PHF ) and the instantaneous frequency (c) in the
high frequency band (fHF ) [161].
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Figure 4.10: The time series of p-values. The rows depict from top to bottom the power in the LF(PLF ) band, the power in the
HF band (PHF ) and the instantaneous HF frequency(fHF ) [161].
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of the test. The values during MPT2 are tending more towards the values during
the rest period compared to those of MPT12. Although MPT12 shows a linear
increasing PLF over time, statistics reveal that the differences between MPT12

and MPT22 (figure 4.10c) are only present during the first two minutes of the
test. Although PT2 has a more or less constant evolution and MPT12 is linearly
increasing, there are almost no statistical differences between the two periods
(figure 4.10), except at the end of the condition (minute 5). Information of the
parasympathetic modulation on the heart rate is shown in the HF power band
(figure 4.9b and 4.10d,e,f). The time evolution is similar as for the LF power,
but statistics reveal other differences. The statistical differences between the
active conditions are all present in the first three minutes of the condition. The
effect of the mental task differs in time. During MPT12, PHF differs from the
period without mental load during the first three minutes (figure 4.10d), while the
second condition with mental load is only significantly different during the second
minute (figure 4.10e). This is also confirmed as the difference between MPT12

and MPT22 is statistically not different during the second minute (figure 4.10f).
The instantaneous frequency in the high frequency band shows an equal frequency
during the four rest periods. The mean frequency increases during the active
conditions. Especially during MPT12, the mean frequency in the HF-band is the
highest, but only significant during the first two minutes (compared to MPT22,
figure 4.10i) and during the second minute (compared to PT2, figure 4.10g).

4.2.4 Discussion

HRV parameters were calculated in several conditions: rest (R1), physical task
(PT1), mental task (MT1) and a combination of both tasks (MPT1) for stressexp
1 and rest (R2), physical task (P2T) and a combination of both tasks (MPT12 and
MPT22) for stressexp 2. During both experiments, almost all described measures
(Mean RR, rMSSD, pNN50, HF) could distinguish the active conditions (PT, MPT,
MT) from the rest condition (R), meaning that the variations in heart rate is a
sensitive marker to any change in mental or physical state, regardless the task itself.
For stressexp 1, the physical task consisted of a heavy shoulder abduction leading
to fatigue. During this test, changes in the heart rate variability were expected
while for stressexp 2, the physical load was low with a simple clicking task. This
confirms the findings in previous work [60, 71, 105, 118, 123, 193] where evidence
was found that physical and mental tasks influence HRV related to disturbances
in the ANS.

A focus of this study was the additional effect on HRV parameters of a mental load.
The combination of the physical and mental task (resp. MPT1 and MPT12) was
expected to result in a higher load compared to the physical task (resp. PT1 and
PT2) or the mental task (MT1) separately. The hypothesis was confirmed by a
significantly higher heart rate and a significantly lower vagal modulation (rMSSD,



INSTANTANEOUS CHANGES IN HEART RATE VARIABILITY DURING PHYSICAL, MENTAL AND
COMBINED STRESS IN LABORARTORY ENVIRONMENT 125

pNN50, HF) during the combined physical and mental load in both experiments.
The effect of the single mental load (increased HR, decreased vagal modulation)
is superposed to the cardiovascular effect of the physical load. This suggests an
additional effect when multiple tasks are combined. Nevertheless, earlier studies
found no effect of mental stress on physiological parameters [180]. One study
reported that the addition of mental demands to a physical computer task does not
elicit any further effect on HRV parameters related to autonomic modulation [60].
Therefore, they suggested that the physical demands have a major influence on
the observed ANS changes whereas the influence of the mental load is insignificant,
while these results reject their hypothesis. An additional effect of a mental task
is identified with both a heavy and a low physical load. A mental load as such
influences autonomic cardiac modulation, even in combination with a simultaneous
physical task.

The power in the low frequency band is described in the literature as the
measure that reveals information of both sympathetic and vagal modulation
[165]. The hypothesis for the study was an increased LF power during the active
conditions compared to the rest conditions, as mental and physical load activate
the sympathetic branch of the ANS [40]. Contrarily, our results reveal a lower LF
power confirming the findings in Hjortskov et al [71] where a withdrawal of vagal
modulation during short-term stress was suggested [63, 147]. They also reported
lower power in the LF band during tasks where mental stress was induced.

The time frequency analysis shows that the described differences are not present
during the complete condition. For example, the PHF in Figure 4.10 was only
significantly different for the first three minutes between the task with the mental
load (MPT12) and the task without the mental load (PT2). There were clear
differences for the HRV parameters during this short period, although the physical
load was similar for both periods. The protocol was fully randomised for the active
conditions, so we can conclude that these changes are originated by the mental load
and not by time. The differences caused by the additional mental load disappear
when repetition took place. This reveals that our ANS is able to cope with
mental load. In the literature, this has been discussed by McEwen [101] from the
prospective of homeostasis and homeostatic load. He explained the adaptability
mechanism of the human body to unknown stress situations. Translated to this
situation, the mental arithmetic is the stress situation and the HRV parameters
change significantly at the beginning of the exposure to the task. After being
exposed to this stress situation for several minutes, the body habituates and at
the end of this condition, the HRV parameters tend to those of PT2. More evidence
for homeostasis can be found by comparing the HRV parameters of MPT12 and
MPT22. For almost all described parameters, there were significant differences
between the first mental load and the second one, showing lower heart rate, more
vagal modulation activity, lower instantaneous frequency in the HF band, related
to the breathing rate. Moreover, except for the mean heart rate and the power in
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the low frequency band, no significant differences were observed between MPT22

and PT2, revealing that the additional effect of the mental arithmetic is minimal
during this second time. The participants know what to expect and are used to
the mental task. The steep increase in heart rate during the MPT12, as shown in
Figure 4.8 for one participant and in Figure 4.9 with the time-frequency analysis,
is less present explicitely. There is still a small effect as the time-frequency analysis
of the power in the HF band revealed no statistically significant difference between
MPT12 and MPT22 during the second minute, while the difference between PT2

and MPT22 is significant for this minute.

The changes in instantaneous HF frequency can be related to changes in respiration
frequency as the main peak in the HF band is normally caused by respiration
[154, 127]. Assuming this, the tasks with mental load have a significantly higher
respiration rate compared to PT and rest in both experiments. A possible
assumption for the increase in respiration rate during the first experiment could
be the effect of speaking as the subjects answered orally on the MENSA test.
Allthough the subjects underwent the tasks with the mental load and answered
orally, this instantaneous HF frequency had a linear decrease within MT1. This
decrease is not to be expected when the increase in respiration rate is only related
to the influence of speaking where a constant frequency during the complete task
would be expected. The increase in the beginning can be related to the effect of the
mental task and the decrease within one condition to habituation. An increased
respiration frequency during a 1h low-grade mental stress task in healthy subjects
was already found in Nilsen et al [113]. Vlemincx et al [177] also reported an
increased breathing rate during mental stress, although Bernardi et al [16] observed
oppositely a lower respiration frequency. The linear increase in instantaneous
frequency during PT1 can be related to incoming fatigue, which is an ongoing
physiological process that initiates from the beginning of the physical load. During
MPT1, the effect is the combination of both the physical and the mental effect
on the frequency: a linear increase due to fatigue during the physical load and a
decrease due to habituation of the mental load, resulting in a constant frequency.
The respiration frequency during MPT1 is at each time instant the highest of the
four conditions of the first experiment. This indication of the fatiguing process of
the body during the physical performance can also be seen in other parameters.
In particular, the LF/HF ratio is increasing monotonously during PT1 and MPT1

(Figure 4.7), indicating the fast increase in sympathetic dominance caused by the
heavy physical task. Evolutions in time were also observed within other conditions.
The decrease in LF during rest condition can indicate recuperation after a physical
load [85]. With respect to the sympathovagal balance, there is a decrease during
rest (not significant), but an increase during both conditions with mental load
showing that the vagal pathways of ANS became relatively a bit more active in
rest while the sympathetic modulation gained importance in case of mental stress.

During stressexp 1, the subjects reported their perceived tension using a
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questionnaire (table 4.2). The subjects reported there to be less happy, more
tensed and less relaxed during the active conditions compared to rest, the different
active tasks brought the participants into another emotional state. The fact that
the subjects revealed to feel more tensed during PT1 compared to MT1 is probably
due to the interpretation of tension as physical tension. MT1 and MPT1 being
not significantly different with respect to the tension level confirmed this idea.
Because of the mental distraction, the perception of tension due to the physical
task is reduced during MPT1. Despite the marked difference in several HRV
parameters between the active conditions, this was not visible in the self rating
scores. Therefore, even if subjects do not indicate a difference in stress level, often
there are changes in their physiology which can be observed via amongst others
heart rate variability.

Studies conducted in a laboratory have the advantage that the experimental
conditions are carefully controlled. However, it is also a limitation that the results
and conclusions cannot necessarily be extrapolated to office settings, although we
believe that the stressors and the physiological stress reactions in the present study
may reflect the reactions during office work. Even more, the stress task as used
in both experiments, does not initiate a similar amount of mental stress to all
the subjects. On the other hand, different people react physiologically different
to the same stressor due to the complex processes in the brain to control the
stress system. Although the results of these analyses reveal an effect of the mental
load on different HRV parameters, group analyses do not reveal the amount of
physiological reaction. Therefore, in this type of analyses, there is a need for
individual models to have a better insight in the effect of stress on the physiology..

Calculating HRV parameters is at low computational cost making the findings of
this study useful in daily life. This study supports the conclusion of Nolan et al
[114] that HRV can be promising to be used in a biofeedback system.

4.3 Stress during pregnancy: Is the autonomic ner-
vous system influenced by Anxiety?

4.3.1 Introduction

Stress and anxiety during pregnancy can influence the development of the fetus. A
low birth weight [119] and prematurity [110] of the child are possible consequences
resulting in long term problems [141]. Several studies reveal that cognitive,
emotional and behavioral disorders occur more often when fetuses are more
exposed to prenatal stress and anxiety [169]. The perceived stress level of the
pregnant mothers are derived from traditional questionnaires such as STAI [39]
and EDS [31].
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Recently, there seems to be more and more interest in studying all kinds of
emotions by means of physiological signals. It is known that stress influences
the cardiac system, which is regulated by the autonomic nervous system (ANS).
The sympathetic and parasympathetic modulation on the cardiac system can be
quantified using heart rate variability (HRV) [165]. Mental stress in laboratory
experiments (cognitive demands, mental arithmetic) has been associated with
decreased HRV, indicating a disturbed ANS [105].

This study is conducted in collaboration with the group of prof. Bea Van den
Bergh (Developmental Psychology, Universiteit van Tilburg, The Netherlands). A
large study is performed about the influence of the psychological characteristics
and physiological responses of the mother during pregnancy on the development
of their babies. The mothers are monitored at several time instants during their
pregnancy. After birth, several physiological parameters of the babies are measured
at different moments to monitor their development. This is, at this moment, an
ongoing project.

In this section, one initial study deducted from the data is described. The
aim was to investigate whether anxiety during pregnancy, as indicated by the
questionnaires, can be linked with differences in the autonomic heart rate
modulation via HRV parameters during both a 24h recording of the ECG and
a test where a mental load is induced. The hypothesis was that perceived stress,
indicated via subjective questionnaires, will be reflected in the differences in HRV
measures so that we would be able to distinguish between a low and a high anxiety
group using these HRV parameters.

The results of this study has been presented at the 37th Annual Computing
in Cardiology conference (CinC 2010), in Belfast (Northern Ireland) and the
conference paper has been published in the proceedings [162].

4.3.2 Methods

Data

180 women, aged from 18 to 40, were recruited from 10 to 12 weeks gestation
onwards and monitored during each semester of the pregnancy. Inclusion criteria
were: no current substance abuse problems, no severe psychiatric problems and
no pregnancy-associated medical problems such as diabetes or hypertension. Each
semester, the participants underwent a 24h ECG recording at 1000 Hz using the
Vrije Universiteit - Ambulatory Monitory System (VU-AMS [179]) during daily
activity. At the end of the 24h recording in the first and the third semesters,
the participants underwent an additional stress test of 25 minutes. The stress
test consists of 5 periods of 5 minutes, in which alternating periods of rest and
mental stress occurred (phases are numbered 1 to 5 in order of appearance; 1,3,5
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= rest and 2,4 = mental task). The mental stress was induced by solving complex
continuous mental calculations of five operations with a two or three digit number.
This period was considered to be stressful as task difficulty was high. During rest,
relaxing pictures were shown and music was played, exposing the participants to
neutral stimuli reducing boredom during this phase. This study considered the
data of the pregnant women during the first semester.

At the beginning of the 24h recordings, the women were requested to fill in several
questionnaires. The most important one for this study was the State Trait Anxiety
Inventory (STAI) to determine the amount of anxiety present. The STAI consists
of a state and a trait subscale; state anxiety is conceptualised as a transient
emotional condition, while trait anxiety reflects a dispositional anxiety proneness
and is known as continuous anxiety. This study only considered the state anxiety.
Based on the STAI score, subjects were divided into three groups regarding their
anxiety level: a low (STAI ≤ 28), medium (28 < STAI < 40) or high (STAI ≥ 40)
anxiety group.

Heart Rate Variability analysis

A tachogram is derived from the raw ECG signals using the Pan-Tompkins
algorithm. The Pan-Tompkins algorithm has a good performance in general.
Nevertheless, errors will be introduced via wrong peak detections and missed peaks.
Therefore, the tachogram is preprocessed as described by Widjaja et al [188].

Linear HRV parameters were obtained in agreement with the standards of
measurement, proposed by the Task Force committee [165]. Mean and standard
deviation (SD) of the tachogram, the square root of the mean squared differences
between consecutive RR intervals (rMSSD), the percentage of intervals that vary
more than 50 ms from the previous interval (pNN50) and the mean of the standard
deviations within 5 minute segments (SDNNi) were calculated in the time domain.
After resampling the tachogram at 2 Hz, the power spectral density (PSD) was
computed by using the Welch method. In the frequency domain, low frequency
power (LF: 0.04–0.15 Hz), high frequency power (HF: 0.15–0.40 Hz) and total
power (0.01–0.40 Hz), as well as the ratio of low over high frequency power
(LF/HF), were calculated. In addition, the power can be expressed in absolute
values (ms2) or in normalised units (n.u.). These linear HRV parameters are used
for both the day-night comparisons and the stress test.

Nonlinear parameters do not describe the amount of modulation as such, but are
able to describe the scaling, complexity and chaotic properties of the signal. Often
used parameters which study the scaling of the system are 1/f slope [88], fractal
dimension (FD) [84] and detrended fluctuation analysis (DFA α1 & α2) [122] while
the complexity is addressed via sample entropy (SampEn) [134]. Also a chaotic
signature is calculated by means of the recently developed numerical noise titration
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Table 4.4: Comparison of HRV parameters of day and night between the different groups,
based on their STAI score.

time High Middle Low pH−L pK−W

SDNNi d 57,71 ± 16,95 51,13 ± 15,24 59,22 ± 16,15 0,557 0,036

TINN d 399,53 ± 152,69 341,33 ± 165,88 425,52 ± 158,62 0,403 0,049

DFA α2 n 1,10 ± 0,11 1,01 ± 0,12 1,05 ± 0,10 0,094 0,013

NLmean d 11,82 ± 6,07 14,91 ± 8,75 16,59 ± 9,11 0,024 0,049

d: day, n: night, pH−L: p-value or comparison between high and low anxious, pK−W : p-value
for Kruskal-Wallis

Table 4.5: Most significant results for the different HRV parameters during the stress
test between the three anxiety groups based on the STAI scores.

Phase High Middle Low pH−L pK−W

meanNN 5 773,04 ± 109,30 739,45 ± 67,90 791,90 ± 74,49 0,547 0,049

RMSSD 2 - 4 -1,76 ± 8,59 1,67 ± 6,64 -3,03 ± 5,71 0,326 0,027

SDSD 2 - 4 -1,55 ± 8,35 1,44 ± 5,87 -2,62 ± 5,49 0,241 0,018

HF 2 - 4 -66,50 ± 161,38 150,86 ± 580,34 -83,07 ± 236,64 0,727 0,026

LF/HF 2 - 4 0,91 ± 1,73 -0,34 ± 2,23 -0,13 ± 0,96 0,049 0,049

pH−L: p-value or comparison between high and low anxious, pK−W : p-value for
Kruskal-Wallis

technique (NLmean and NLdr) [126]. These parameters can only be calculated on
sufficient long segments. Therefore, the non-linear parameters were only calculated
when analysing the 24h recordings.

Statistical analysis

In order to quantify the relationship between the questionnaires and the HRV
parameters, the Kruskal-Wallis test was used to differentiate between the three
groups (between the high and the low group more specifically). Extra analyses
were performed using the Spearman correlation coefficient ρ to look for possible
correlation between HRV measures and the STAI score.

4.3.3 Results

The activity during day and night is different. Therefore, 6 successive hours during
day and night were selected manually and the HRV parameters were analyzed.
Table 4.4 gives the most important results of the comparisons between the three
anxiety groups. The Kruskal-Wallis test revealed several statistically significant
differences, but the post hoc-test shows that these differences were mainly between
the middle and low anxiety group and not between the high and the low anxiety



STRESS DURING PREGNANCY: IS THE AUTONOMIC NERVOUS SYSTEM INFLUENCED BY ANXIETY?
131

Figure 4.11: NLmean for the 6h-day measurements in function of the STAI score.

Figure 4.12: the standardised meanRR intervals during the test for the three anxiety
groups. (© = high; � = middle;

`
= low).

group. A more general approach to look for a relationship between the STAI score
and the HRV-parameters is calculating the correlation between the two variables.
For the day-night comparisons, only a significant correlation coefficient is found
for the NLmean parameter as shown in Figure 4.11 (ρ = -0.26, p = 0.021), but the
figure does not reveal a convincing result. This negative correlation was more
expressed during day than night time. Positive correlations were only found
for parameters related to sympathetic activity (LF [n.u.] and LF/HF) and for
the detrended fluctuation analysis (DFA) parameters. In contrast, the positive
correlations were stronger at night compared to day time.

Figure 4.12 shows the normalised meanRR intervals during the stress test for the
three anxiety groups. The different conditions can be distinguished for each group.
The more interesting was the difference in reaction between the three different
groups. Therefore, we deducted between-group analyses of the different HRV
parameters for the different phases and for differences in phases. Table 4.5 gives
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Table 4.6: Significant correlation coefficients during the stress test between HRV
parameters and the STAI scores.

Phase ρ p
SDNN 4 -0,233 0,040
pNN50 4 -0,225 0,048

2 - 4 0,240 0,034
LF 3 -0,239 0,035

4 -0,253 0,026
HF 2 -0,260 0,022

3 -0,237 0,037
3 - 4 -0,255 0,024

LF/HF 2 - 4 0,238 0,036

an overview of the most important results. Some statistically significant differences
were present, but not to differentiate between the high and low anxiety group as
hypothesised. This difference was statistically significantly present for LF/HF.

Table 4.6 shows the statistically significant correlation coefficients between the
HRV parameters and the STAI scores. Several correlations are present, but ρ
shows that these correlations are not persuasive. A general trend when analyzing
the correlation coefficients is that the HRV parameters of the individual phases
are negatively correlated with the STAI scores and are more present during phases
with the mental load during the stress test.

4.3.4 Discussion

The goal of this study was to investigate whether anxiety during pregnancy,
as indicated with a self-rating score (the STAI score), can be linked with the
functioning of the autonomic nervous system via different HRV parameters.
Therefore, the cardiac system of several pregnant women was investigated for its
sleep-wake rhythms and during a stress test. The ANS, characterised via different
HRV parameters, showed little influence of anxiety, indicated by the STAI score.
This revealed that a strong correlation between a psychological self-rating score
and the physiological response of the subjects is absent [109].

A statistically significant indication of anxiety could be found in the chaos
of the RR intervals: more anxiety leads to less chaos. This difference was
only statistically significant during the day, where the daily activity was not
standardised and is therefore not a very strong evidence. Most other HRV
parameters showed slightly negative correlations with the STAI score, indicating
a reduced HRV for women with high anxiety that is in agreement with a reduced
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HRV for several pathologies. Two measures (LF [n.u.] and LF/HF), both related
to the sympathovagal balance, showed positive correlations during the day. These
positive correlations were more present during the night. In general terms, we can
state that anxiety results in a higher sympathovagal balance while sleeping and
in a global reduction of HRV during the day, although these correlations were not
statistically different.

Anxiety, reflected from the STAI scores, revealed hardly any influence on the
cardiac reaction during the stress test. All time domain measures indicated a
negative correlation with the STAI score during the different phases of the stress
test. This confirms the hypothesis that anxiety reduces the variability of the heart
rate. HF, a marker of the parasympathetic modulation on the heart rate, revealed
a statistically significant negative correlation coefficient during the different phases
indicating a reduced parasympathetic influence in women with high anxiety. This
was more apparent during the periods with mental load.

The statistically significant differences, described here, were only marginal
compared to the numerous analyses that were performed during this study. The
conclusions that could be made were only from trends in the data. A limitation
of the study was that the state anxiety of the STAI was used. The state anxiety
is depending on the situation and can vary during day time. A better approach
could be to use the trait anxiety of the STAI, that reflects the dispositional anxiety
proneness. Another limitation during the stress test could be the task we used
to induce stress. These women are pregnant and their main concern is to have
a healthy baby. This concern is mainly responsible for the anxiety level. The
mental arithmetic test could induce a different type of stress that is not linked
with the concerns of the pregnant women. Even more, it is likely that the mental
task, as imposed here, did not initiate the same amount of mental stress on the
subjects. There are subjects that have a very strong stress reaction by solving
these calculations, while others are not stimulated to solve these tasks as good as
possible. Therefore, a combination of different types of stressors could improve
the accuracy of the study, as the current study is only focussing on a very specific
mental stress, which is not the type of stress why the women score high on anxiety.

Solving the above mentioned limitations could possibly lead to better correlations
between the psychological score and the physiological responses of the cardiac
system. However, the stress phenomenon is a very complex reaction. Stress is,
in its nature, a subjective and psychological phenomenon that initiates different
reactions in the brain of the subjects leading to physiological reactions. The
results show that several people report to be very sensitive to mental stressors
via questionnaires, which is by definition a subjective measure, does not result
automatically in a very strong stress reaction in the physiological parameters. The
absence of this correlation reveals that there are different processes in the brain
that regulate the stress system and these processes interact with each other in a
complex way. The nature of these complex interactions is still not clear and the
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question will be whether this complex system will be unravelled completely in the
future. This explains why there is not a 1 to 1 relation between the cause of the
mental stress and the physiological stress response of the body.

This study is a part of a larger project at the university of Tilburg [46]. In this
project, a follow up study of the influence of the stress and the anxiety of women
during their pregnancy to the development of their babies is performed. For future
analysis, the physiological scores via, for example, HRV can be used as predictor
for the development of the fetus and its problems and compared with the results
when the psychological questionnaires for anxiety are used. In this type of studies,
the influence of genetic factors can not be neglected and should also be taken into
account. For example, the susceptibility to stress and the genetic factors that are
responsible for this susceptibility could be a more important factor than the stress
itself.

4.4 Respiration

4.4.1 Introduction

In this section, a short overview of the most important influences of respiration
on heart rate variability are discussed. In a first subsection, the effect of the
respiration, and more specific sighing, during a stress task will be explored. The
psychophysiological interpretation of sighing has become a large topic in research.
During the stressexp 2, the respiration was included as one of the physiological
signals, so this analysis could be included. In the literature, there is a huge ongoing
discussion about the role of respiration in HRV analysis. This problem will be
discussed in the last subsection.

4.4.2 Sighing: a psychophysiological resetter

During stressexp 2, the respiration was quantified using information retrieved from
a capnograph (determines the CO2 of the exhaled air), measured with a nose
tube and the LifeShirt vest that measures thoracic and abdominal respiration
via two resistive belts. These analyses are realised in close collaboration with
the Research Group on Health Psychology (Katholieke Universiteit Leuven). The
human respiration system is activated with physical and/or mental effort. This
system responds in different ways to different efforts. For example, gradually
increasing physical effort (such as walking or running) first results in an increase
in breathing volume followed by an increase in respiration rate. Mental effort due
to mental arithmetic tasks results mainly in an increase in respiration rate and
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Figure 4.13: Shows the tidal volume of one test subject. The respirations are presented
in breath-to-breath intervals. The sighs are indicated with X.

not in breathing volume. The respiratory system does not necessarily respond in
the same way for different mental tasks.

Sighs, defined as single deep breaths, are often considered disturbances of
spontaneous breathing. Nonetheless, sighing may play an important role
in regulatory processes. Vlemincx et al [175] argued that sighs operate as
general psychophysiological resetters. First, reductions in lung compliance
and gas exchange efficiency are restored by sighing [22, 11]. Second, sighing
resets parasympathetic control when sympathetic activity chronically dominates
autonomic regulation [56]. Third, sighing resets various fractions of respiratory
variability to a healthy balance representing a sensitive, yet stable respiratory
system. Therefore, the effect of sighing during a mental load is of importance.
Here the results of sighing during the second experiment are presented. The sighs
could be identified using the above mentioned measurements as shown in figure
4.13.

The second experiment consisted of three active tasks (one sustained attention task
with clicking, PT, and two tasks where a mental effort was asked in combination
with clicking, MPT). The results are presented in figure 4.14. The expectation
was that subjects would sigh when tension had built up and relief was necessary.
The number of spontaneous sighs during MPT would therefore be a good indicator
of tension. This expectation was confirmed. Statistical analysis revealed that the
number of sighs was higher during MPT than during PT and rest periods. The
prevalence of multiple sighs may indicate built up tension and mental overload,
while no statistically significant difference was seen between the number of sighs
during the physical task and the rest periods.

The collaboration with Elke Vlemincx resulted in two journal papers in Psy-
chophysiology [177] and Physiology & Behavior [176]. I collaborated in the
data acquisition, in the discussion of the results and in the preparation of the
manuscripts.



136 HEART RATE VARIABILITY

Figure 4.14: Number of sighs during different conditions of the second experiment. R =
mean rest; MPT1 = first mental and postural taks; MPT2 = second mental and postural
task; PT = postural task. * Indicates statistically significantly different from R (p<0.05).

4.4.3 Respiration versus HRV

In the literature, there is an ongoing discussion about the influence of respiration
on the HRV parameters. Several studies reported on the effect of respiratory
parameters, such as respiration rate, tidal volume, expiration/inspiration rate on
the different HRV parameters [15, 128, 168], but no consensus exist.

The Respiratory Sinus Arrhytmia (RSA), the variation in heart rate due to
respiration where the heart rate increases during inspiration and decreases during
expiration, is seen as an index for parasympathetic control and therefore in the HF
band. The peak frequency in this band is an indication of the mean respiration
rate and the power in the HF band is measure for parasympathetic modulation
of the heart. The respiration rate is nonstationary and the RSA can shift outside
the boundaries of the HF band due to very slow or fast respiration. Bailon et
al [9] therefore proposed to work with a variable HF frequency band, localised
around the respiration rate and calculate the HF power. Recent studies however
show that variations in the respiration rate and volume alter the amount of RSA,
independent from the parasympathetic control. Therefore, the information in the
HF band due to RSA is the topic of recent papers, but no consensus is reached for
the real physiological interpretation [42, 66].

In fact, Bernardi et al [15] claimed that in the absence of simultaneous analysis of
respiration, the changes in the LF/HF ratio should be taken as a clear evidence
of changes in sympathovagal balance. In orde to incorporate respiration into the
interpretation of the frequency domain of the HRV, one must look closely into the
mechanisms of interaction between respiration and the heart rate control system.
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Despite many past studies, the precise physiological mechanisms of LF and HF
components of HRV and their relation to respiration are still beign debated [168].

Even more, Wessel et al [183] gave an example of cardiorespiratory modeling which
demonstrates that the complex behaviour of the heart rate is mainly caused by
the respiration which influences the coupling of heart rate and blood pressure.
They suggested therefore that the complex heart rate fluctuations resulted from
a modulation by breathing and that this complex respiratory behaviour can be
explained by the regulation of ventilation.

The main question is to what extent we need to correct for respiration in HRV
analysis. On one side, there is the theory that the main goal of HRV analysis is to
retrieve information about the ANS. It is less important whether this information is
originated by respiration and therefore no correction is needed. Others hypothesise
that correction for respiration during HRV analysis is necessary because the HRV
reveals information of the heart and not of the respiratory system. Nevertheless,
this correction uses the respiration parameters as covariates during the statistical
analysis [136, 42]. Presumably, this approach overestimates and overcompensates
the respiratory influences on the HRV and removes information that is not related
to the respiration.

In the future, there is need for new signal processing methods to correct the
tachogram for influence of respiration to improve HRV analyses. This could
probably add new information to the above mentioned discussion. Moreover,
there is a clear interaction between the cardiovascular and the respiratory system
and research has been devoted to the synchronisation between both systems. In
biomedical signal processing, there is a tendency to combine different signals
using multimodal signal processing techniques to extract additional information
compared to the different signals analyzed separately. This will become more
important as it is possible to extract respiration information from the ECG signal
using ECG derived respiration signals [10]. From the raw ECG signal, a respiration
signal can be extracted. This respiratory signal arises from the movement of
electrodes with respect to the heart during respiration. This causes changes in the
electrical impedance, which modifies the waveform of the ECG signal.

4.5 Conclusion

The analysis of the heart rate signal during both experiments showed that heart
rate variability (HRV) is a powerful tool to see the effect of mental stress. The
HRV characteristics could differentiate between rest, physical and mental load.
The addition of a mental load to a physical task elicited further effect on HRV
parameters related to autonomic cardiac modulation. Time-frequency analysis
revealed that the mental stress level changes in time within one phase. The effect
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of the stressor used in this study was reduced after three minutes. This type of
analysis is able to detect changes within the 6 minute phase that were not visualised
by the standard HRV parameters when evaluated across the 6 minute phases. This
clarifies the importance of using time-frequency for this type of applications. In
addition, calculating HRV parameters is at low computational cost making the
findings of this study useful in a biofeedback system.

The study of the effect of anxiety in pregnant women showed that anxiety, reflected
from subjective questionnaires, revealed hardly any influence on the amount of
cardiac reaction during the stress test and the day-night comparison. All time
domain measures indicated a negative correlation with the STAI score during
the different phases of the stress test. This confirms the hypothesis that anxiety
reduces the variability of the heart rate. On the other hand, no correlations were
statistically significantly different. The frequency content in the HF band, a marker
of the parasympathetic modulation on the heart rate, revealed a statistically
significant negative correlation coefficient during the different phases indicating
a reduced parasympathetic influence in women with high anxiety. This was more
apparent during the periods with mental load, although not in a statistically
significant way. The mental task to initiate stress in this study could be questioned,
as this task aims to initiate a very specific type of mental stress. For several
pregnant women this task did not initiate stress as they were not interested in
solving the arithmetic calculations.

The stress phenomenon is a very complex reaction. Stress is a subjective,
psychological phenomenon that initiates different reactions in the brain of the
subjects leading to physiological reactions. The results show that several people
report to be very sensitive to mental stressors via questionnaires, which is by
definition a subjective measure, does not result automatically in a very strong
stress reaction in the physiological parameters. The absence of this correlation
reveals that there are different processes in the brain that regulate the stress
system and these processes interact with each other in a complex way. The nature
of these complex interactions is still not clear and the question will be whether
this complex system will be unravelled completely in the future. This explains
why there is not a one-to-one relation between the initiator of the mental stress
and the physiological stress response of the body.



Chapter 5

Near Infrared Spectroscopy:
processing applied to muscle
fatigue

The first part of this chapter describes the myoelectric and oxygenation mechanisms
of muscles during muscle fatigue. More specifically, the behavior of the indiviual
sEMG and NIRS parameters and their relationship in the biceps brachii muscle
until exhaustion after isometric static and semidynamic exercises are investigated.
In section 5.5, the sEMG and NIRS parameters are used to investigate the response
of the oxygenation and the myoelectric signals of the muscle after a physical effort
on patients with Duchenne Muscle Dystrophy in a pilote study.

5.1 Introduction

Knowledge of myoelectric and oxygenation mechanisms in muscles is important to
understand muscle fatigue [94]. A frequently used definition of muscle fatigue is
the one established by Edwards [45]: Fatigue is defined as a failure to maintain
the required or expected force. As a consequence, a fatigued muscle can not
maintain the expected force and exhaustion occurs at a specific point in time.
Note that the cause of muscle fatigue is not limited to metabolic limitations
in the muscle. Neurological, physiological and circulatory changes influence the
development of muscle fatigue. These changes already occur at the beginning
of the contraction. These initial changes can only be measured using techniques
as surface electromyography (sEMG) for myoelectric changes and near-infrared
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spectroscopy (NIRS) for oxygenation changes. NIRS appeared to be a reliable
method for non-invasive muscle consumption [28, 130].

sEMG records the electrical activity of a muscle and is a good indicator of muscle
force and fatigue [94]. Standard parameters of sEMG signals are extracted to
analyze the electrical activity of the muscle. NIRS allows the direct and non-
invasive measurement of local blood circulation, blood volume, and changes in
oxygenated haemoglobin (Hb) and myoglobin (Mb) in working muscles [107].
Muscle oxygenation is the number of Hb saturated with oxygen (O2) in the blood
of the muscle. Oxygenation and blood volume decrease significantly and similarly
during restriction of blood flow due to intramuscular pressure for example when
caused by exercise [191].

Although considerable research had been devoted to myoelectric or oxygenation
changes during fatigueing exercises, rather less attention has been paid to the
combination of myoelectric and oxygenation changes during development of muscle
fatigue. The aim of this study is to investigate the relationship between sEMG
and NIRS parameters in the biceps brachii muscle until exhaustion after isometric
static (STAT) and semidynamic (DYN) exercises. Understanding their behaviour
can lead to additional information in order to make a better assessment of muscle
fatigue [49].

This study was a collaboration of the group of prof. dr. Gunnar Naulaers (division
of neonatology at the university hospital UZ Gasthuisberg of Leuven), where NIRS
is used to measure the oxygenation in the brain of premature babies and the group
of prof. dr. ir. Arthur Spaepen (lab of biomechanics and ergonomics, faculty of
sports and rehabilitation sciences at the Katholieke Universiteit Leuven) where
sEMG is used to study the muscle fatigue. This study is accepted for publication
as a journal paper in Advances in Experimental Medicine and Biology in December
2010 [163].

5.2 Methods

5.2.1 Experimental procedure

In total, 34 test subjects (17 male, 17 female, 21 ± 2.0 years) were requested to
sit on a chair with the right upper arm relaxed against the body and elbow angle
equal to 90◦, forearm positioned in supination with hand palm up. A wooden
handle attached with a solid rope to a load cell was held in the hand. The subject
was instructed to bend his elbow using only arm muscles. This static isometric
contraction caused activation of biceps brachii muscle (BB). sEMG electrodes and
NIRS probe were placed in the direction of muscle fibres on BB symmetrically [48]
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Figure 5.1: Positioning of the sEMG electrodes and NIRS probe on the biceps brachii
muscle [163].

of the line between medial acromion and fossa cubit at 1/3 from fossa cubit [57]
as shown in figure 5.1.

The exerted force on the load cell was amplified using a volt amplifier (HBM,
Germany) and visual feedback of the force was given to the subject by a
digital oscilloscope (Hewlett Packard, 54501A). sEMG signals (bipolar pre-gelled
Ag/AgCl electrodes) were amplified. The NIRS probe (NIRO 300 , Hamamatsu
Photonics K.K., Tokyo, Japan) was connected to the NIRO 300 measurement
and display unit for visualization. All signals from sEMG, NIRO 300 and force
transducer were digitised at a sampling rate of 1kHz with an analog-to-digital
converter (National Instruments, cDAQ, 24 bit) before storage on a personal
computer.

Figure 5.2 gives an overview of the protocol. Initially a maximal voluntary
contraction (MVC) was measured as reference value for the sEMG signals and
the total force of the test subject. After 5 minutes of recuperation, the subject
performed a static contraction (STAT) at 50% MVC until exhaustion. On the
oscilloscope, a line was fixed, representing the target level of force output. At the
moment the force of the subject decreased to 90% of the required force, the muscle
was defined as exhausted. After 20 min recuperation a isometric contraction with
different load was exerted in the static position. In this manuscript, we will refer to
this contraction as the semi-dynamic contraction (DYN) On the oscilloscope, two
horizontal lines representing 20% and 60% MVC and time interval were displayed.
Subject performed alternating 4s contractions at 20% MVC and 6s contractions
at 60% MVC until exhaustion. The contractions at 50% and 60% of MVC are
anaerobic, while a contraction at 20% MVC is aerobic.
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Figure 5.2: Overview of the protocol to measure NIRS and sEMG during muscle fatigue.

5.2.2 Muscle fatigue parameters

Surface electromyography (sEMG) is frequently used in kinesiology as an indicator
of muscle activation, force production or fatigue index. This objective, non-
invasive, and indirect method detects motor unit action potentials (MUAPs) in
the muscle fibre during muscle activity. The summation of the MUAPs of the
underlying muscle detected by the electrodes provides the sEMG signal that results
in the ability to estimate non visible phenomena in the muscle such as muscle
fatigue [94]. The tradiotional myoelectric parameters RMS and MPF are used
next to the activity measure (ACT) which has been reported to be less sensitive
to muscle fatigue. A last parameter, the ratio RMS/ACT, gives an indication of
muscle fatigue that less dependent to changes of the muscle force [70].

Near-infrared spectroscopy (NIRS) is a non-invasive technique that can be used for
the measurement of tissue oxygenation. This method is based upon the relative
transparency of biological tissue to light in the near-infrared (NIR) part of the
light spectrum. Signal detection is based on levels of light directed through the
muscle and picked up by the detector after the light has travelled through tissue.
Tissue oxygenation index (TOI) is a NIRS parameter and indicates the dynamic
balance between O2 supply and O2 consumption in tissue capillaries, arterioles
and venules [23, 112].

5.3 Results

All subjects successfully completed the protocol. The results are given in Table
5.1. MVC force produced by men was significantly larger than that produced by
women (p<0.001) and women could significantly longer maintain the DYN test
compared with men (p<0.01). The DYN test was significantly longer than the
STAT test for all subjects (p<0.001) indicating that local muscle exhaustion was
reached faster during the STAT test.
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Table 5.1: Duration of tests and MVC force, given as mean (SD)

STAT time (s) DYN time (s) MVC force (N)
[s] [s] [N]

Total 78(20) 147(46) 175(7)
Men 73(20) 123(24) 235(5)
Women 83(19) 172(51) 116(3)

Figure 5.3: the mean value of the sEMG parameters over all subjects during both tests
(A: STAT, B: DYN) [163].

Figure 5.3 shows the mean value of the sEMG parameters over all subjects during
both tests (A: STAT, B: DYN). The time scale was normalised to the total
contraction time until exhaustion. The figures reveal on group level an increasing
RMS and RMS/ACT slopes (p<0.001), a decreasing MPF slope (p<0.001) and a
flat ACT slope (p>0.05).

Figure 5.3 shows the TOI response of a representative subject during the STAT
(A) and the DYN test (B). The TOI showed a typical four-phase response during
both tests that could be identified for all the test subjects. The first 2-3 seconds
after the initiation of the contraction, a small increase of TOI is noticed, indicating
an increase in muscle oxygenation (phase 1). Secondly, a fast linear decrease of
the TOI could be identified. The change in TOI during phase I and II was similar
for both contraction modalities. There was no statistically significant difference
of the duration of phase 2 within the subjects between the two tests. In the third
phase, the TOI is on group level almost constant and dependent on the type of
contraction. There is a flat line for the STAT test, while the trace of the TOI
during the DYN test is following the contraction intensity. The ∆TOI, which
is the difference between the initial value during phase I and the constant value
of phase III (the mean value is taken during the DYN test), correlates negatively
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Figure 5.4: the TOI response of a representative subject during the STAT (A) and the
DYN test (B) [163].

with the total exertion time (STAT: r = -0.56, p<0.001; DYN: r = -0.66, p<0.001).
Higher differences in the TOI value resulted in a shorter duration of exercise and
consequently exhaustion occurs faster. Subjects with a small negative TOI slope in
phase II could maintain both tests longer (STAT: r=-0.64, p<0.001; DYN: r=-0.74,
p<0.001). Finally phase 4 shows the TOI after the contraction. This phase shows
the TOI during recuperation and was only recorded after the STAT test. There
was an initial overshoot of the TOI after contraction, but the TOI recovered to
the initial value within the 20 minutes of recuperation between the STAT and the
DYN test. The TOI value at the beginning of the DYN test was not statistically
significantly different with the initial TOI value.

The MPF and the TOI slope during phase 2 are significantly correlated during
both the STAT and DYN test (p<0.001). During the DYN test, a statistically
significantly negative correlation between the TOI slope during phase II and the
RMS/ACT ratio is also identified (p<0.01), however, this correlation was not
significant during the STAT test. In earlier studies, a strong positive correlation
was reported between muscle oxygenation and MPF [48, 23].

5.4 Discussion

During both tests for all the subjects, an increasing RMS and RMS/ACT slopes,
a decreasing MPF slope and an almost stable ACT slope was found for all the
subjects. The sEMG parameters confirm that muscle fatigue is an ongoing linear
process that initiates from the very beginning of the contraction [70]. Both pictures
show that RMS/ACT corrects for movement compensation during the fatigue test.
The RMS/ACT curve is more an increasing straight line compared to the RMS
curve, which is generally used in literature. This confirms the finding of [70] that
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RMS/ACT is a better parameter to estimate muscle fatigue. The RMS/ACT ratio
and MPF are clear indicators for the myoelectric activity of local muscle fatigue.

The TOI showed a four-phase response during both tests, which was also
demonstrated in earlier studies [48]. A short increase was identified, followed
by a decrease in TOI. The duration of this decline seems parallel with the energy
pathways for muscle exercise. The muscle firstly consumes any ATP stored in the
muscle (about 2-3 seconds). Afterwards, it uses phosphocreatine (CP) as energy
source to resynthesize ATP until the CP is depleted, which lasted according to
the literature for 15-30s [2]. After the ATP and CP are used, the body will move
on to either aerobic or anaerobic metabolism (glycolysis) to continue to create
ATP to fuel exercise. The energy during the third phase is probably mainly taken
from glycogen in anaerobic glycolysis due to a deficit in oxygen. The mechanical
obstruction of the blood flow in the muscle during a contraction limits the supply
of sufficient oxygen. This leads to the accumulation of lactic acid followed by
an oxygen debt resulting in muscle exhaustion [2]. During the DYN test, the
trace of the TOI is following the contraction intensity. This indicates an increased
supply of oxygen during the 20% MVC contraction, which is an aerobic contraction,
leading to a small recuperation period during the DYN test. These short periods
of recuperation during the aerobic contraction were absent during the STAT test,
where the contraction was the complete duration anaerobic, and explains why
the STAT test was statistically significant shorter for all the test subjects. The
duration of phases I and II were similar during both tests for all the test subjects,
while the length of the third phase was dependent on the length of the contraction.
After the exercise, during the fourth phase, there is an overshoot of the TOI
revealing an increase in oxygen supply for recuperation.

The negative correlation between ∆ TOI and total exertion time reveals that higher
deoxygenation during the contraction results in earlier exhaustion of the muscle.
A higher deoxygenation during phase II causes a larger oxygen debt resulting in a
faster fatiguing process. Despite the evidence in sEMG that fatigue is an ongoing
linear process, NIRS does not reveal this. On the other hand, a NIRS parameter
gives an indication of the velocity of the fatigue process.

This study shows that although sEMG and NIRS measure two different physiologi-
cal phenomena of muscle fatigue, there is a link between both measurements. The
MPF of the myoelectric signal is strongly correlated with the muscle oxygenation.
On the other hand, only sEMG shows that muscle fatigue is an ongoing linear
process that starts from the beginning of the contraction, while the duration of
the contraction was correlated with a parameter from the TOI. We can conclude
that both sEMG and NIRS give complementary information concerning muscle
fatigue.
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5.5 Muscle activity assessment for patients with
Duchenne Muscle Distrophy (DMD)

Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular
disorder clinically characterised by progressive muscle weakness starting in
childhood and leading to death around the age of 20 years. With an estimated birth
prevalence of 1 in 4200 live born males, it is one of the most frequent neuromuscular
disorders. DMD is a progressive muscle disease that starts with an abnormal gait
with toe walking, but continues with a decrease in muscle strength. This decrease
in muscle strength initiates from the distal muscles in the limbs and makes the
children wheelchair bound at the age of around 12 with a complete loss of mobility.
There is a progressive functional loss of the respiration muscles and the heart
muscle and leads to a mortality at around 20-25 years [14].

DMD is caused by mutations of the dystrophin gene which is located on the
short arm of the X-chromosome (Xp21). The protein product, called dystrophin,
is situated at the sarcolemma in muscle fibres and is part of the dystrophin-
glycoprotein-complex (DGC). The DGC provides a structural link between the
actin cytoskeleton and the extracellular matrix, thereby stabilizing the sarcolemma
during cycles of muscle contraction and relaxation [19]. Although the primary
gene deficiency is known since 1996, the precise mechanism by which dystrophin
deficiency causes the destruction of muscle fibres is still unknown and until now,
there is no effective treatment and complete healing for this disease. Treatment
goals are to maintain function, prevent contractures and keeping these children
standing and walking as long as possible.

The diagnosis of DMD is based on clinical signs and indirect measures and is
confirmed after a muscle biopsy. The progress of the disease is monitored via
indirect measures: walking test, maximal force, breathing volume . . . But at this
moment, no objective measure exists at this moment. Therefore, we performed
an explorative study to investigate the response of the oxygenation and the
electrophysiology of the muscle after a physical effort on patients with DMD. For
this measurement, NIRS and sEMG are acquired continuously and simultaneously.
The probe of the NIRS and the sEMG electrodes are placed on the biceps brachii
muscle of the test subject (as shown in figure 5.1). The ultimate goal is to look for
differences in the muscular metabolism of these DMD patients during and after
a contraction to establish an objective parameter of the progress of the disease.
The protocol consisted of a rest period of 2 minutes, a submaximal (60% of MVC),
aerobic, isometric elbow flexion during 1 minute, followed by a recuperation phase
of 10 minutes where the muscle is at rest.

This project was a continuation of the research on muscle fatigue where sEMG
and NIRS were used and was executed at the UZ Gasthuisberg with the group
of prof. dr. Gunnar Buyse (Division of pediatric neurology). 18 test subjects
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were measured in this pilote study where 16 DMD patients and 2 healthy children.
The age of the DMD patients ranged from 7 years at which there is only initial
manifestation of the disease to 20 years (severe manifestations of the disease:
patients have limited mobility and are wheelchair bounded).

Figure 5.5: The change in muscle oxygenation in function of the change in muscle
amplitude. DMD patients are in red, healthy patients in blue.

Figure 5.6: Initial recuperation of the oxidised haemoglobin after the contraction. Red
trace is the DMD patient, the blue trace is the healthy patient.

The healthy patients can be differentiated from the DMD patients based on
the results showed in figure 5.5. The change from rest to contraction in tissue
oxygenation is plotted in function of the change in sEMG amplitude. The healthy
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patients showed a larger difference in sEMG activity. The control children showed
a decrease in TOI during the contraction, while for the patients with severe
manifestations of the disease, this decrease in tissue oxygenation index was low or
absent. The DMD patients (blue dots) at the right of the figure are the youngest
patients that show limited manifestations of the disease. The older patients are
clustered around each other as they show limited reaction in both physiological
signals during the submaximal contraction.

Figure 5.6 shows the initial recuperation of the oxidised haemoglobin after the
contraction. A different profile can be seen between the healthy patient and the
DMD patient. The DMD shows a faster overshoot of the HbO2, but a faster return
to baseline.

A different profile in the dynamic of the oxidised and reduced heamoglobin can be
observed between normal subjects and patients with Duchenne Muscle Dystrophy
by means of Near-Infrared spectroscopy and sEMG signals. Preliminary studies
have found that this profile presumably changes accordingly to the state of the
muscle degeneration. In this patient a faster return to baseline, compared to
normal patients, of the oxidised haemoglobine after contraction preceded by an
overshoot was found, together with a undershoot in the reduced haemoglobine
and a fast return to baseline values. A possible explanation of this behaviour
can be related to the increase of the oxydative strees inside the cell, produced
by a higher concentration of calcium, which can lead to a state where the muscle
acts as it is still contracted even when the contraction has finished, together with
a possible acceleration of the cell oxygen consumption; however, no evidence of
persisted contraction has been found yet in patients with the distrophy. Further
studies are needed in order to confirm this hypothesis and to find relation with
the dystrophy pathophysiology.

In the first focus will be with the patients in the range of 6-12 years old. This is
the group that receives medical interventions to increase their quality of life and
is therefore the most interesting group at this moment.

5.6 Conclusion

The study presented in the first part of this chapter shows that although sEMG and
NIRS measure two independent physiological phenomena during muscle fatigue,
there is a link between both measurements. The MPF of the myoelectric signal
is strongly correlated with the muscle oxygenation. On the other hand, only
sEMG shows that muscle fatigue is an ongoing linear process that starts from the
beginning of the contraction, while the duration of the contraction was correlated
with a parameter from the TOI. We can conclude that both sEMG and NIRS give
complementary information concerning muscle fatigue. The TOI showed a typical
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four-phase response during contraction that could be related to the metabolic
processes in the muscle

There are indications that the sEMG and NIRS combination reveal information
about the muscle state and the progress of the disease. Different parameters could
be defined that could distinguish between the healthy patients and the patients
with the DMD disease.





Chapter 6

Conclusions and future
research

6.1 General conclusions

6.1.1 Mathematical techniques

• To remove the major source of interference (ECG contamination) in a
sEMG signal in the shoulder girdle, two recently developed single channel
approaches of independent component analysis (ICA) were used and
their performance was compared with the standard technique (template
subtraction) to remove the ECG interference signal. These two techniques
are based on the idea to decompose a single measurement using wavelets or
ensemble empirical mode decomposition (EEMD) before applying ICA on
their decompositions. When the corresponding ECG signal is not available
which could be the case during different measurements, EEMD-ICA has
the best performance compared to wICA and yields similar performance as
the template subtraction for higher SNR, while for lower SNR, EEMD-ICA
is significantly better than template subtraction and slightly better than
wICA. We can conclude that for offline use, when the calculation time is not
important, EEMD-ICA has the best performance. When the ECG channel
is present, the template subtraction is preferable due to a better performance
and lower computational time.

• An interesting pattern is discovered during the visual inspection of the sEMG
signals of the trapezius muscle: spontaneous activation of a single motor
unit. An algorithm to detect spike trains is capable of detecting single motor
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unit firings. The algorithm, based on an energy operator and correlation
calculation, showed an excellent performance as it reaches a sensitivity of
100% and a specificity of 94,8%.

• An algorithm to detect the absolute rest level of a muscle, the Rest Level
Estimation (RLE), is developed and this algorithm is used to determine the
true rest level of the muscle based on the frequency properties of the sEMG
signal during contraction and in rest. Via easy thresholding, this algorithm
is able to differentiate between the signals of the muscle in rest and in
contraction. The RLE also has other useful applications. As it measures the
rest level of a muscle in an objective way, without a reference measurement,
we are able to distinguish in a daily task between the active and rest state of
the muscle. The RLE can therefore be used in a biofeedback system to alert
users if there are too few rest periods, and in the long term, help prevent
musculoskeletal disorders of the neck and shoulder.

6.1.2 Stress

• sEMG signals of the trapezius muscle showed an interesting specific pattern:
in approximately 65% of the subjects measured during a stress assessment
task, spike trains appeared in the signals. We have evidence that these spike
trains are the continuous firing of a single motor unit. This indicates a very
low and subconscious muscle contraction without the benefit for postural
change. This pattern could not be related directly to stress, as it appeared
randomly in the right and left muscles, during periods with rest and with a
mental load. This could suggest that the presence of a mental load restrains
the muscle from relaxing and recuperating. Frequent prevalence of single
motor unit firing can lead to overload and exhaustion of these muscle fibers,
resulting in pain and tissue damage.

• The sEMG parameters of the trapezius muscle showed no relation with the
imposed mental task. However, this muscle shows spontaneous activity
without any beneficial effect on the posture. The SMUF is one example
of this spontaneous activity, next to the recuperation that this muscle needs
after a conscious contraction. There is more tension on this muscle than
expected and overuse of these muscle fibers could lead to exhaustion and
possible to MSD afterwards. Therefore, the monitoring of this muscle in the
battle against MSD is preferable.

• Two experiments were conducted to reveal the effect of mental stress on the
muscle activity of the trapezius muscle. This mental load was imposed in
situations with and without a physical load. The two experiments differed
in the level of postural load imposed. For the first experiment, test subjects
performed a heavy 6-minute shoulder abduction with and without a mental
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task. Muscle tension did not increase significantly with the addition of a
mental task. The possible additive effect of the mental load was assumed to
be low and was probably overshadowed by the muscle activity for the postural
load. For the second experiment, the postural task was to click a computer
mouse, emulating a lower postural load more similarly to office tasks. The
results for the second experiment were similar to the results of the first one.
At a group level, muscle activity did not differ significantly for a postural
task with or without a mental task for the left an right shoulder muscles. The
reactions of the muscle activity of the trapezius are individual and different
among the subjects so that no statistically significant differences could be
identified. The analysis of the trapezius muscle activity as physiological
measure is insufficient to see the effect of mental stress on the muscle activity.
This is confirmed via video analysis, which reveals that other muscle groups
also show muscle reaction. To have a broader view on the muscle reactions
due to stress, other muscles of the body should also be included in future
studies such as different face muscles (masseter, frontalis and temporalis
muscle), the paravertebral muscles and the multifidus muscle.

• The heart rate variability analysis during both experiments showed that this
is a very promising tool to see the effect of mental stress. We were able to
differentiate the HRV characteristics between rest, physical and mental load.
The addition of a mental load to a physical task elicited further effect on
HRV parameters related to autonomic cardiac modulation. Time-frequency
analysis revealed that the mental stress level changes in time within one
phase. The effect of the stressor used in this study was reduced after
three minutes. This type of analysis is able to detect changes within the
6 minute phase that were not visualized by the standard HRV parameters
when evaluatedacross the 6 minute phases. This clarifies the importance of
using time-frequency for this type of applications. In addition, calculating
HRV parameters is at low computational cost making the findings of this
study useful in daily life. HRV can be promising to be used in a biofeedback
system. In addition, calculating HRV parameters is at low computational
cost making the findings of this study useful in a biofeedback system.

• The analysis of the effect of anxiety in pregnant women shows that there
is no correlation between the subjective questionnaires and the amount of
cardiac reaction during the stress test. Stress is, in its nature, a subjective
and psychological phenomenon that initiates different reactions in the brain
of the subjects leading to physiological reactions. The results show that
although several people report via questionnaires to be very sensitive to
mental stressors, they do not have automatically a very strong stress response
in these physiological parameters. The absence of this correlation reveals
that there are different processes in the brain that regulate the stress system
and these processes interact with each other in a complex way. The nature
of these complex interactions is still not clear and the question will be
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whether this complex system will be unravelled completely in the future.
This explains why there is not a one-to-one relation between the initiator of
the mental stress and the physiological stress response of the body.

• Both, the analysis of the muscle activity and the heart rate variability reveal
the need for individual analysis during stress monitoring. The stress system
consists of very complex reactions in the brain, which are at this moment
not completely understood. Those reactions, however, are responsible for
the different reactions of individual people on stressors: both in the amount
of the reaction as in the physiological reaction itself.

• The mental tasks to initiate stress in this manuscript could be questioned.
These tasks initiate a very specific type of mental stress. There are subjects
that have a very strong stress reaction by solving these specific tasks imposed
in the experiments, while others are not stimulated to solve arithmetic
calculations as good as possible. Several subjects showed a change in
physiological reaction during the first rest period of the experiments, which
means that they were not at ease at that time moment. In the study with
the pregnant women, their main concern is to have a healthy baby. This
concern is mainly responsible for the anxiety level. The mental arithmetic
test could induce a different type of mental stress that is not linked with the
concerns of the pregnant women.

6.1.3 Other Applications

• The study that analyses the myoelectric and oxygenation mechanisms of
muscles during muscle fatigue shows that although sEMG and NIRS measure
two independent physiological phenomena of muscle fatigue, there is a link
between both measurements. The mean power frequency (MPF) of the
myoelectric signal is strongly correlated with the muscle oxygenation. On
the other hand, only sEMG shows that muscle fatigue is an ongoing linear
process that starts from the beginning of the contraction, while the duration
of the contraction was correlated with a parameter from the TOI. We
can conclude that both sEMG and NIRS give complementary information
concerning muscle fatigue. The TOI showed a typical four-phase response
during contraction that could be related to the metabolic processes in the
muscle.

• There are indications that the sEMG and NIRS combination reveal
information about the muscle state and the progress of the Duchenne Muscle
Dystrophy. Different parameters could be defined that could distinguish
between the healthy patients and the patients with the DMD disease.
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6.2 Future work

6.2.1 EMG analysis

High Density sEMG

In this work, traditional differential surface electromyography signals are used.
The main functionality that can be monitored using these signals is related to
the overal muscle activation and muscle force. A lot of valuable information is
lost using these signals. Therefore, sEMG signal processing should continue in
the direction of the HD-EMG. This enables to analyze the behavior of individual
motor units and increases the information that can be retrieved from the sEMG
signals. Moreover, recently developed multichannel techniques that proved to be
successful in for example brain analysis using an electroencephalogram or image
processing techniques could be modified to process these signals and improve the
analysis.

We suggest that this HD-EMG should be introduced in the stress research as the
analysis of the single channel sEMG do not provide that much information. The
analysis reveal that there is muscle activity in the trapezius muscle during several
periods, but more information about the origin of the activity, the number of
motor units that are involved could help to identify the real cause of the muscle
activity. To this extent, more specific information about the single motor unit
firings that we discovered in the sEMG analysis during both experiments could be
derived: where is the motor unit located, is it always the same single motor unit
that starts firing or does this alters . . . All these questions can be answered using
HD-EMG.

Trapezius muscle

The behavior of the trapezius muscle needs special attention in the stress research.
This muscle acts differently compared to other skeletal muscles and the complete
functionality of this muscle is still not completely clear. There is a spontaneous
activation of this muscle, but the origin of this activation is still unclear. Moreover,
this muscle needs recuperation time after a conscious contraction, while other
muscles are immediately in rest after a contraction. All these extra activations
of the muscle are making it vulnerable to musculoskeletal disorders. A lot of
people that suffer from long term exposure to stress know about tension and
pain in this muscle. More research should be devoted to reveal the physiological
processes that are taking place in this muscle and which measures could be taken
to relax this muscle. The use of NIRS to investigate the oxygenation of this muscle
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during different types of physical and mental load could increase the insight in the
behaviour of this muscle.

6.2.2 Heart Rate Variability and respiration

There is an ongoing discussion in the literature about the role of respiration in
heart rate variability. There is a clear relationship between the ECG signal (and
the tachogram) on one side and the respiration on the other side. A respiration
signal can be extracted from the ECG and several HRV parameters are related
to respiratory influences. But the complete interaction between respiration and
HRV is still not clear. The RSA component is the component that quantifies
the increase in heart rate due to inspiration and the decrease with expiration.
However, the information from this measure is also used as a measure for the
vagal modulation of the autonomic nervous system on the heart rate. This implies
that there is more information than only the respiration present in this component
and signal processing techniques should be used to extract this extra information.
Moreover, the interaction between the heart rate and respiration could provide
extra information, so techniques need to be developed to quantify this interaction.

This result presented in this manuscript about the effect of anxiety on the difference
in reaction of the HRV parameters is a small part of a bigger project with a follow
up of the pregnant women and their babies. For future analysis, the physiological
scores via HRV can be used as predictor for the development of the fetus and its
problems and compared with the results when the psychologic questionnaires for
anxiety are used.

6.2.3 Near Infrared Spectroscopy in muscle analysis

Muscle oxygenation

In the study presented in this manuscript, the tissue oxygenation index showed
a typical four-phase evolution during a submaximal contraction until exhaustion.
By analyzing these signals and looking at the timing, we could link several phases
to metabolic processes in the muscles. But at this moment, there is no evidence
that this metabolic information could be extracted from the tissue oxygenation
index and more research in collaboration with physiologists needs to be devoted
to this topic. At this moment, only the TOI is used, but also the oxidised, the
reduced and the total amount of haemoglobin can be monitored over time.
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Duchenne Muscle Dystrophy

The use of NIRS and sEMG is relatively new in the research of the patients with
Duchenne Muscle Dystrophy. The results of the explorative pilote study reveal
that there could be valuable information in these physiological signals, but a more
thorough research should be executed where patients with the Duchenne Muscle
Dystrophy and healthy children of the same age are monitored. The ultimate
goal would be a standardised test using one or both physiological measurement
to monitor the evolution of the disease and to see whether different interventions
improve the disease and the quality of life of these patients. A next study will limit
the study population between 6 and 12 years old as this is the range of patients
where medical interventions could improve their quality of life.

6.2.4 Stress

Multidisciplinary research

The phenomenon of stress is a very complex system consisting of very various
interactions in the brain. The nature of these complex interactions is still not
clear and the question will be whether this complex system will be unravelled
completely in the future. This explains why there is not a 1 to 1 relation between
the cause of the mental stress and the physiological stress response of the body.
Because of the complexity, stress is at this moment a hot topic in research and its
impact will even increase more in the future. Many research groups with different
backgrounds are working in the field of stress: Psychologists are elaborating the
psychological aspect of the stress and well-being and the impact on the personality
of persons; In psychiatry, there is a focus on the consequences of stress leading
to chronic fatigue syndrome, depression, obesitas. . . Biomedical engineers start
looking at changes that occur in different physiological signals such as the heart
rate, muscle activity, respiration. . . And physiotherapists are studying meditation
therapies and techniques to reduce the stress. A next step in the research should
be a close collaboration between the different research divisions working in this
area. Biomedical engineering and signal processing, for example, could benefit
substantially from knowledge of the physiological processes in the brain and the
body due to stress in order to increase the accuracy of analysis, while psychology
can make a big step forward when taking the psychophysiological background of
stress into account. Therefore, the research of stress should be tackled in a highly
inter- and multidisciplinary way where the combination of the knowledge of the
different scientific areas and the strong interaction between these multidisciplinary
research groups should generate the required synergy to advance the insight and
knowledge in stress and stress monitoring. At this moment, it is too early to say
whether stress detection will be possible. Stress remains the mysterious interaction
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between the body and the mind, which is not resolved at this moment. The
question is whether this subjectivity and objectivity will be coincide at one time.
Big leaps still needs to be taken in this direction. Multidisciplinary research could
be a first step towards the good direction.



Appendix A

The results of the ECG removal (described in section 3.3) of the 8 real life signals
are presented in this appendix. In this figures, the first 15 seconds are plotted for
clarity, but these 15 seconds are a representative for the rest of the signal. The first
eight figures (1-8) show the results of the single channel approach, where the ECG
interference is removed using only the sEMG signal. The next eight figures (9-16)
show the results of the same signals using the two channel approach where both
the sEMG signal and the corresponding ECG signal are used. Each figure shows
from top to bottom the original contaminated signal, the cleaned sEMG signal
from respectively the template subtraction, the wavelet-ICA and the EEMD-ICA.
The bottom plot shows the corresponding ECG signal to see the occurrence of
each heart beat.
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Figure 1: ECG removal on real life signal 1 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 2: ECG removal on real life signal 2 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 3: ECG removal on real life signal 3 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 4: ECG removal on real life signal 4 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 5: ECG removal on real life signal 5 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 6: ECG removal on real life signal 6 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 7: ECG removal on real life signal 7 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 8: ECG removal on real life signal 8 using the single channel approach. The top figure shows the contaminated sEMG
signal. The middle three figures show the results after cleaning with the template subtraction (Te-Su) algorithm, after wavelet-ICA
(wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show the corresponding ECG channel for
validation.
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Figure 9: ECG removal on real life signal 1 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 10: ECG removal on real life signal 2 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 11: ECG removal on real life signal 3 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 12: ECG removal on real life signal 4 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 13: ECG removal on real life signal 5 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 14: ECG removal on real life signal 6 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 15: ECG removal on real life signal 7 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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Figure 16: ECG removal on real life signal 8 using the two channel (sEMG and corresponding ECG channel) approach. The top
figure shows the contaminated sEMG signal. The middle three figures show the results after cleaning with the template subtraction
(Te-Su) algorithm, after wavelet-ICA (wave) and Ensemble Empirical Mode Decomposition-ICA (EEMD). The lower trace show
the corresponding ECG channel for validation.
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