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a b s t r a c t

This paper introduces an on-line semi-supervised learning algorithm formulated as a regularized kernel
spectral clustering (KSC) approach. We consider the case where new data arrive sequentially but only
a small fraction of it is labeled. The available labeled data act as prototypes and help to improve the
performance of the algorithm to estimate the labels of the unlabeled data points. We adopt a recently
proposed multi-class semi-supervised KSC based algorithm (MSS-KSC) and make it applicable for on-
line data clustering. Given a few user-labeled data points the initial model is learned and then the class
membership of the remaining data points in the current and subsequent time instants are estimated and
propagated in an on-line fashion. The update of the memberships is carried out mainly using the out-of-
sample extension property of themodel. Initially the algorithm is tested on computer-generated data sets,
then we show that video segmentation can be cast as a semi-supervised learning problem. Furthermore
we show how the tracking capabilities of the Kalman filter can be used to provide the labels of objects
in motion and thus regularizing the solution obtained by the MSS-KSC algorithm. In the experiments, we
demonstrate the performance of the proposed method on synthetic data sets and real-life videos where
the clusters evolve in a smooth fashion over time.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In many real-life applications, ranging from data mining
to machine perception, obtaining the labels of input data is
often cumbersome and expensive. Therefore in many cases one
encounters a large amount of unlabeled datawhile the labeled data
are rare. Semi-supervised learning (SSL) is a framework inmachine
learning that aims at learning from both labeled and unlabeled
data points (Zhu, 2006). SSL algorithms received a lot of attention
in the last years due to rapidly increasing amounts of unlabeled
data. Several semi-supervised algorithms have been proposed in
the literature (Belkin, Niyogi, & Sindhwani, 2006; Chang, Pao, &
Lee, 2012; He, 2004; Mehrkanoon & Suykens, 2012;Wang, Chen, &
Zhou, 2012; Xiang, Nie, & Zhang, 2010; Yang et al., 2012). However,
most of the SSL algorithms, operate in batchmode, hence requiring
a large amount of computation time and memory to handle data
streams like the ones found in real-life applications such as voice
and face recognition, community detection of evolving networks
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and object tracking in computer vision. Therefore designing SSL
algorithms that can operate in an on-line fashion is necessary for
dealing with such data streams.

In the context of on-line clustering, due to the complex
underlying dynamics and non-stationary behavior of real-life data,
attempts have beenmade to design adaptive clustering algorithms.
For instance, evolutionary spectral clustering based algorithms
(Chakrabarti, Kumar, & Tomkins, 2006; Chi, Song, Zhou, Hino, &
Tseng, 2007; Ning, Xu, Chi, Gong, & Huang, 2010), incremental
K -means (Chakraborty & Nagwani, 2011), self-organizing time
map (Sarlin, 2013) and incremental kernel spectral clustering
(Langone, Agudelo, De Moor, & Suykens, 2014). However, in all
above-mentioned algorithms the side-information (labels) is not
incorporated and therefore they might underperform in certain
situations.

A semi-supervised incremental clustering algorithm that can
exploit the user constraints on data streams is proposed in Halkidi,
Spiliopoulou, and Pavlou (2012). The user’s prior information are
presented to the algorithm in the form of must-link and cannot-
link constraints. The authors in Kamiya, Ishii, Furao, and Hasegawa
(2007) introduced an on-line semi-supervised algorithm based on
a self-organizing incremental neural network.

Here we adopt the recently proposed multi-class semi-
supervised kernel spectral clustering (MSS-KSC) algorithm
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(Mehrkanoon, Alzate, Mall, Langone, & Suykens, 2015) and make
it applicable for an on-line data clustering/classification. In MSS-
KSC the core model is kernel spectral clustering (KSC) algorithm
introduced in Alzate and Suykens (2010). MSS-KSC is a regular-
ized version of KSC which aims at incorporating the information of
the labeled data points in the learning process. It has a systematic
model selection criterion and the out-of-sample extension prop-
erty. Moreover, as it has been shown in Mehrkanoon and Suykens
(2014), it can scale to large data.

In contrast to the methods described in Adankon, Cheriet,
and Biem (2009), Belkin et al. (2006), Chang et al. (2012), Xiang
et al. (2010), Yang et al. (2012), in the MSS-KSC approach a
purely unsupervised algorithm acts as a core model and the
available side information is incorporated via a regularization
term. In addition, the method can be applied for both on-line
semi-supervised classification and clustering and uses a low-
dimensional embedding. In the MSS-KSC approach, one needs to
solve a linear system of equations to obtain the model parameters.
Therefore with n number of training points, the algorithm has
O(n3) training complexity with naive implementations. The MSS-
KSC model can be trained on a subset of the data (training data
points) and then applied to the rest of the data in a learning
framework. Thanks to the previously learned model, the out-
of-sample extension property of the MSS-KSC model allows the
prediction of the membership of a new point. However, in
order to cope with non-stationary data-stream one also needs to
continuously adjust the initial MSS-KSC model.

To this end, this paper introduces the Incremental MSS-KSC
(I-MSS-KSC) algorithm which takes advantage of the available
side-information to continuously adapt the initial MSS-KSC model
and learn the underlying complex dynamics of the data-stream.
The proposed method can be applied in several application
domains including video segmentation, complex networks and
medical imaging. In particular, in this paper we focus on video
segmentation.

There have been some reports in the literature on formulating
the object tracking task as a binary classification problem. For
instance in Teichman and Thrun (2012) a tracking-based semi-
supervised learning algorithm is developed for the classification of
objects that have been segmented. The authors in Badrinarayanan,
Budvytis, and Cipolla (2013) introduced a tree structured graphical
model for video segmentation.

Due to the increasing demands in robotic applications, Kalman
filtering has received significant attention. In particular Kalman
filter has been applied in wide applications areas such as robot
localization, navigation, object tracking and motion control (see
Chen, 2012 and references therein). The authors in Suliman,
Cruceru, and Moldoveanu (2010) use the Kalman filter for
monitoring a contact in a video surveillance sequence. In Zhong
and Sclaroff (2003), a Kalman filter based algorithm is presented
to segment the foreground objects in video sequences given
non-stationary textured background. An adaptive Kalman filter
algorithm has been used for videomoving object tracking inWeng,
Kuo, and Tu (2006).

In case of the video segmentation, we show how Kalman filter
can be integrated into the I-MSS-KSC algorithm as a regularizer
by providing an estimation of the labels throughout the whole
video sequences. This paper is organized as follows. In Section 2,
the kernel spectral clustering (KSC) algorithm is briefly reviewed.
In Section 3, an overview of the multi-class semi-supervised
clustering (MSS-KSC) algorithm is given. The incremental multi-
class semi-supervised clustering regularized by Kalman filtering
approach is described in Section 4. In Section 5, experimental
results are given in order to confirm the validity and applicability
of the proposed method. The experimental findings and the
demonstrative videos are provided in the supplementary material
(see Appendix A) of this paper.1

2. Brief overview of KSC

The KSC method corresponds to a weighted kernel PCA
formulation providing a natural extension to out-of-sample data
i.e. the possibility to apply the trained clustering model to out-
of-sample points. Given training data D = {xi}ni=1, xi ∈ Rd,
the primal problem of kernel spectral clustering is formulated as
follows (Alzate & Suykens, 2010):

min
w(ℓ),b(ℓ),e(ℓ)

1
2

Nc−1
ℓ=1

w(ℓ)Tw(ℓ)
−

1
2n

Nc−1
ℓ=1

γℓe(ℓ)TVe(ℓ)

subject to e(ℓ)
= Φw(ℓ)

+ b(ℓ)1n, ℓ = 1, . . . ,Nc − 1

(1)

where Nc is the number of desired clusters, e(ℓ)
= [e(ℓ)

1 , . . . , e(ℓ)
n ]

T

are the projected variables and ℓ = 1, . . . ,Nc − 1 indicates the
number of score variables required to encode the Nc clusters. γℓ ∈

R+ are the regularization constants. Here

Φ = [ϕ(x1), . . . , ϕ(xn)]T ∈ Rn×h

where ϕ(·) : Rd
→ Rh is the feature map and h is the dimension

of the feature space which can be infinite dimensional. A vector of
all ones with size n is denoted by 1n. w(ℓ) is the model parameters
vector in the primal. V = diag(v1, . . . , vn) with vi ∈ R+ is a user
defined weighting matrix.

Applying the Karush–Kuhn–Tucker (KKT) optimality conditions
one can show that the solution in the dual can be obtained by
solving an eigenvalue problem of the following form:

VPvΩα(ℓ)
= λα(ℓ), (2)

where λ = n/γℓ, α(ℓ) are the Lagrange multipliers and Pv is the
weighted centering matrix:

Pv = In −
1

1T
nV1n

1n1T
nV ,

where In is the n × n identity matrix and Ω is the kernel matrix
with ij-th entry Ωij = K(xi, xj) = ϕ(xi)Tϕ(xj). In the ideal case of
Nc well separated clusters, for a properly chosen kernel parameter,
the matrix VPvΩ has Nc − 1 piecewise constant eigenvectors with
eigenvalue 1.

The eigenvalue problem (2) is related to spectral clusteringwith
randomwalk Laplacian. In this case, the clustering problem can be
interpreted as finding a partition of the graph in such a way that
the random walker remains most of the time in the same cluster
with few jumps to other clusters, minimizing the probability of
transitions between clusters. It is shown that if

V = D−1
= diag


1
d1

, . . . ,
1
dn


,

where di =
n

j=1 K(xi, xj) is the degree of the ith data point, the
dual problem is related to the random walk algorithm for spectral
clustering.

From the KKT optimality conditions one can show that the score
variables can be written as follows:

e(ℓ)
= Φw(ℓ)

+ b(ℓ)1n = ΦΦTα(ℓ)
+ b(ℓ)1n

= Ωα(ℓ)
+ b(ℓ)1n, ℓ = 1, . . . ,Nc − 1.

The out-of-sample extensions to test points {xi}
ntest
i=1 is done by

an Error-Correcting Output Coding (ECOC) decoding scheme. First

1 ftp://ftp.esat.kuleuven.be/stadius/siamak/155-spt.zip.
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the cluster indicators are obtained by binarizing the score variables
for test data points as follows:

q(ℓ)
test = sign(e(ℓ)

test) = sign(Φtestw
(ℓ)

+ b(ℓ)1ntest)

= sign(Ωtestα
(ℓ)

+ b(ℓ)1ntest),

where Φtest = [ϕ(x1), . . . , ϕ(xntest)]
T and Ωtest = ΦtestΦ

T . The
decoding scheme consists of comparing the cluster indicators ob-
tained in the test stage with the codebook (which is obtained in
the training stage) and selecting the nearest codeword in terms of
Hamming distance.

3. Semi-supervised clustering using MSS-KSC

Consider training data points

D = {x1, . . . , xnUL  
Unlabeled

(DU )

, xnUL+1, . . . , xn  
Labeled
(DL)

}, (3)

where {xi}ni=1 ∈ Rd. The first nUL data points do not have labels
whereas the last nL = n − nUL points have been labeled. Assume
that there are Q classes (Q ≤ Nc), then the label indicator matrix
Y ∈ RnL×Q is defined as follows:

Yij =


+1 if the ith point belongs to the jth class
−1 otherwise. (4)

The information of the labeled data is incorporated to the kernel
spectral clustering (1) by means of a regularization term. The aim
of this term is to minimize the squared distance between the
projections of the labeled data and their corresponding labels.
The formulation of Multi-class semi-supervised KSC (MSS-KSC)
described inMehrkanoon et al. (2015) in primal is given as follows:

min
w(ℓ),b(ℓ),e(ℓ)

1
2

Q
ℓ=1

w(ℓ)Tw(ℓ)
−

γ1

2

Q
ℓ=1

e(ℓ)TVe(ℓ)

+
γ2

2

Q
ℓ=1

(e(ℓ)
− c(ℓ))T Ã(e(ℓ)

− c(ℓ))

subject to e(ℓ)
= Φw(ℓ)

+ b(ℓ)1n, ℓ = 1, . . . ,Q ,

(5)

where cℓ is the ℓ-th column of the matrix C defined as

C = [c(1), . . . , c(Q )
]n×Q =


0nUL×Q

Y


n×Q

, (6)

where 0nUL×Q is a zero matrix of size nUL × Q and Y is defined as
previously. The matrix Ã is defined as follows:

Ã =


0nUL×nUL

0nUL×nL
0nL×nUL

InL×nL


,

where InL×nL is the identity matrix of size nL × nL. V is the inverse
of the degree matrix defined as previously.

Since in Eq. (5) the feature map ϕ is not explicitly known,
one uses the kernel trick and solves the problem in the dual. The
Lagrangian of the constrained optimization problem (5) becomes

L(w(ℓ), b(ℓ), e(ℓ), α(ℓ)) =
1
2

Q
ℓ=1

w(ℓ)Tw(ℓ)
−

γ1

2

Q
ℓ=1

e(ℓ)TVe(ℓ)

+
γ2

2

Q
ℓ=1

(e(ℓ)
− c(ℓ))T Ã(e(ℓ)

− c(ℓ))

+

Q
ℓ=1

α(ℓ)T

e(ℓ)

− Φw(ℓ)
− b(ℓ)1n


,

where α(ℓ) is the vector of Lagrange multipliers. Then the
Karush–Kuhn–Tucker (KKT) optimality conditions are as follows,

∂L

∂w(ℓ)
= 0 → w(ℓ)

= ΦTα(ℓ), ℓ = 1, . . . ,Q ,

∂L

∂b(ℓ)
= 0 → 1T

nα
(ℓ)

= 0, ℓ = 1, . . . ,Q ,

∂L

∂e(ℓ)
= 0 → α(ℓ)

= (γ1V − γ2Ã)e(ℓ)
+ γ2c(ℓ),

ℓ = 1, . . . ,Q ,

∂L

∂α(ℓ)
= 0 → e(ℓ)

= Φw(ℓ)
+ b(ℓ)1n, ℓ = 1, . . . ,Q .

(7)

Elimination of the primal variables w(ℓ), e(ℓ) and making use of
Mercer’s Theorem (Vapnik, 1998), results in the following linear
system in the dual (Mehrkanoon et al., 2015):

γ2


In −

R1n1T
n

1T
nR1n


c(ℓ)

= α(ℓ)
− R


In −

1n1T
nR

1T
nR1n


Ωα(ℓ), (8)

where R = γ1V − γ2Ã. As is shown in Mehrkanoon et al. (2015),
given Q labels the approach is not restricted to finding just Q
classes and instead is able to discover up to 2Q hidden clusters. In
addition, it uses low embedding dimension to reveal the existing
number of clusters which is important when one deals with large
number of clusters. In fact one maps the data points to a Q -
dimensional space, which from now on will be referred to as α-
space, and the solution vectors α(ℓ) (ℓ = 1, . . . ,Q ) represent the
embedding of the input data in this space. Therefore every point xi
is associated with the point [α

(1)
i , . . . , α

(Q )
i ] in the α-space. (space

spanned by the solution vector α(ℓ)).
Once the solution to (8) is found, the codebook CB ∈

{−1, 1}p×Q is formed by the unique rows of the binarized solution
matrix (i.e. [sign(α(1)), . . . , sign(α(Q ))]). Here each code-word is a
binary word of length Q and represents a cluster. The maximum
number of clusters that can be decoded is 2Q since the maximum
value that p can take is 2Q .

In theMSS-KSC formulation, the clusters in the projection space
(e-space) obtained by e(ℓ) form lines with well-tuned RBF kernel
parameters. Whereas the projection of the points in the α-space
obtained byα(ℓ) show a localized behavior. (SeeMehrkanoon et al.,
2015 for more details.) For the sake of clarity we illustrate the
projected points in both α and e-spaces, in the case of a synthetic
two moons data set in Fig. 1.

The MSS-KSC algorithm (Mehrkanoon et al., 2015) is summa-
rized in Algorithm 1.

4. Incremental multi-class semi-supervised clustering

It has been shown in Mehrkanoon et al. (2015) that for the
MSS-KSC approach, one has to solve a linear system of size n
(number of training data points) in the dual to obtain the cluster
membership of the data points. This is fine for batch mode but
does not fit practical applications such as on-line semi-supervised
clustering, in which the data are entered sequentially. If the
distribution of the new arriving data points is not in line with
the one of the training points, then the trained model cannot
explain well the new distribution. Therefore in those cases an
adaptive learning mechanism is required. In what follows we will
show how one can use the out-of-sample extension property of
the MSS-KSC model for dealing with data streams in an on-line
fashion.
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Fig. 1. Two moons data set: The labeled data point of only one class is available and is depicted by the red circle (•). (a): Data points in the original space. (b): The result of
MSS-KSC algorithm with RBF kernel. (c): The mapped data points in the α space. (d): The mapped data points in the e space. (For the colored figure, the reader is referred to
the web version of this article.)
Algorithm 1: MSS-KSC: Semi-supervised clustering
(Mehrkanoon et al., 2015)
Input: Training data set D , labels Y , the tuning parameters

{γi}
2
i=1, the kernel parameter (if any), number of

clusters Nc , the test set D test
= {xtesti }

ntest
i=1 and number

of available class labels i.e. Q
Output: Cluster membership of test data points D test

1 Solve the dual linear system (8) to obtain {αℓ
}
Q
ℓ=1 and

compute the bias term {bℓ
}
Q
ℓ=1.

2 Binarize the solution matrix
Sα = [sign(α(1)), . . . , sign(α(Q ))]n×Q , where
αℓ

= [αℓ
1, . . . , α

ℓ
n]

T .
3 Form the codebook CB = {cq}

p
q=1, where cq ∈ {−1, 1}Q ,

using the Nc most frequently occurring encodings from
unique rows of solution matrix Sα .

4 Estimate the test data projections {e(ℓ)
test}

Q
ℓ=1 using (9).

5 Binarize the test projections and form the encoding matrix
[sign(e(1)

test), . . . , sign(e(Q )
test)]ntest×Q for the test points (Here

e(ℓ)
test = [e(ℓ)

test,1, . . . , e
(ℓ)
test,ntest ]

T ).
6 ∀i, assign xtesti to class/cluster q∗, where
q∗

= argminq dH(e(ℓ)
test,i, cq) and dH(·, ·) is the Hamming

distance.

4.1. Out-of-sample solution vector

In the batch MSS-KSC algorithm (Mehrkanoon et al., 2015), the
cluster membership of new and unseen test points D test

= {xi}
ntest
i=1

is done by an Error-Correcting Output Coding (ECOC) decoding
scheme. First the cluster indicators are obtained by binarizing the
score variables for test data points as follows:

q(ℓ)
test = sign(e(ℓ)

test) = sign(Φtestw
(ℓ)

+ b(ℓ)1ntest)

= sign(Ωtestα
(ℓ)

+ b(ℓ)1ntest), ℓ = 1, . . . ,Q ,

where Φtest = [ϕ(x1), . . . , ϕ(xntest)]
T and Ωtest = ΦtestΦ

T
∈

Rntest×n, (n is the number of training points). The decoding scheme
consists of comparing the cluster indicators obtained in the test
stage with the codebook CB (which is obtained in the training
stage) and selecting the nearest codeword in terms of Hamming
distance.

For an on-line fashion, once themodel is built using the training
data points, one can use the above procedure to estimate the
cluster membership of the new test points. But in order for the
model to be able to track the non-stationary changes in the data
stream, the initial codebook CB should be adapted on-line so that
it has the information of the more recent data points.

In addition one has to incrementally update the solution
vectors α. Since in the MSS-KSC approach one needs to solve a
linear system of equations, it is possible to use for instance the
Sherman–Morrison–Woodbury formula (Golub & Van Loan, 2012)
to efficiently update the inverse of the coefficientmatrixwhenever
a new data point is arrived without explicitly computing the
matrix inverse. In this case, also one should use some decremental
algorithm to cope with non-stationary data stream.

Here we aim at using the out-of-sample extension capability
of the MSS-KSC model. Consider ntest new data points, D test

=

{xi}
ntest
i=1 . The score variables are:

e(ℓ)
test = Φtestw

(ℓ)
+ b(ℓ)1ntest = Ωtestα

(ℓ)
+ b(ℓ)1ntest ,

ℓ = 1, . . . ,Q , (9)

where Φtest and Ωtest are defined as previously. The third KKT
condition in (7),

α(ℓ)
= (γ1V − γ2A)e(ℓ)

+ γ2c(ℓ), ℓ = 1, . . . ,Q ,

links the score variables for training, i.e. e, to the solution vector α.
The idea now is to extend this link to out-of-sample projections,
such that we obtain an out-of-sample solution with localized
properties. The out-of-sample solution vector α(ℓ), ℓ = 1, . . . ,Q
for the new test data points are then defined as follows:

α̂
(ℓ)
test , (γ1Vtest − γ2Atest)e

(ℓ)
test + γ2c

(ℓ)
test, ℓ = 1, . . . ,Q , (10)

where ctest consists of label information of somedata points.Vtest =

D−1
test = diag( 1

d1
, . . . , 1

dntest
) is the inverse degreematrix for the test
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data points. If there is no label available, one can simply estimate
the solution vector by setting ctest and Atest equal zero. In case
that the test data set is sampled from the same distribution as
the training data points, then the approximated out-of-sample
solution vector α̂test, from Eq. (10), will display localized cluster
structures. Thus we have embed the data points xi ∈ Rd into the
Q -dimensional Euclidean space called α-space, i.e.

xi → αi := (α
(1)
i , . . . , α

(Q )
i ), ∀i = 1, . . . , ntest.

In the case of well separated clusters, the data points that lie in the
same cluster in the original space, are all mapped to one point in
α-space. But in practical applications where clusters are not well
separated, the data points in the same cluster in the input space
will be close to each other in the α-space with respect to the other
points in different clusters. Using this localized representation for
out-of-sample solutions in α-space it is possible to introduce the
representative or conceptual centroid of a cluster in this space.

From now on, we use two spaces: the original space X where
the data point xi lies and theα-spacewhere the embedded solution
vector αi lies. Before starting to introduce the on-line semi-
supervised clustering algorithm, let us introduce some definitions
that will be used in the remaining of the papers.

Definition 1. The representative or conceptual centroid of the ith
cluster Ai in the X-space, is defined as the mean value of the data
points in Ai. We denote the cluster representative in the X-space
by repX(Ai).

Definition 2. The representative or conceptual centroid of the ith
cluster Ai in the α-space, is defined as the mean value of the
embedded solution vector αk∈J , (J = {j |xj ∈ Ai}), across all
dimensions of the features. We denote the cluster representative
in the α-space by repα(Ai).

Definition 3. Aprototype is defined as a point in theX-space orα-
space that has been labeled. The jth prototype is denoted by protX,j
and protα,j in X-space and α-space respectively.

Definition 4. Assume that the cluster representatives repX(Ai(k))
at time step k are obtained. A new set of data points D (k+1) at time
step k+1 are defined as outliers or in other words they form a new
cluster if their kernel evaluations with respect to all training data
points are very close to zero. Therefore x∗ ∈ D (k+1) is considered as
outlier if

ntr
i=1 K(x∗, xi)2 < θ0 where θ0 is a user defined threshold.

Furthermore if there is no single data point and prototype assigned
to the ith cluster Ai then this cluster is eliminated.

In what follows, the on-line semi-supervised algorithm will
be described. The proposed on-line multi-class semi-supervised
clustering consists of two stages. In the first stage, one trains the
MSS-KSC algorithm (Mehrkanoon et al., 2015) using n training
data points D (that contains both label and unlabeled data
points) to obtain the initial solution vectors αi and the cluster
memberships. Assuming that Nc clusters are detected, the initial
cluster representative repX(Ai) and repα(Ai) are then obtained
using Definitions 1 and 2. The aim of the second stage is to
predict the membership of the new arriving data points using the
updated solution vectors αi. When batch of new data points are
arrived the out-of-sample extension properties of the MSS-KSC
algorithm is used to approximate the score variables associated
with the new points. Next steps composed of the estimation of the
projection of the points in the α-space using (10) and calculating
the membership of the points. Finally the cluster representatives
in both α and X-spaces are updated. (step 13 in Algorithm 2).
Remark 1. If the algorithm is initialized poorly (the first stage),
then one cannot expect to have a good clustering performance
for the on-line stage (the second stage). The good initialization
can be achieved by the aid of user labels and well tuned model
parameters. The performance of the initialization can bemonitored
by checking the value of an internal quality index such as
Silhouette, Fisher and Davies–Bouldin indices.

Remark 2. The data points that are to be operated can arrive either
one-by-one or as a batch of new points. In the proposed I-MSS-KSC
algorithm when a batch of new data points arrives at time step k,
more than one cluster can be detected without the need of using
any extra step (such as applying K -means in the projection space).
Given Q cluster representatives at time instant k − 1, the total
number of new clusters that can be created at time step k is Q . The
binarized projections of the outlier points in the α-space is used
as an indicator for the number of new clusters at time instance k.
In the case of sequential one-by-one case since at time instance k,
only one sample is fed to the algorithm, there will be a possibility
of creation of at most one cluster.

The proposed on-line semi-supervised clustering algorithm is
summarized in Algorithm 2.2The general stages of the I-MSS-KSC
approach are described by the flow-chart in Fig. 2.

In Algorithm 2, the data-stream might already have some
labeled samples which then can be considered as prototypes.
Otherwise, depending on the application, the prototypes can be
provided by the user or for instance, for a video segmentation task
the prototypes of the objects in motion can be estimated bymeans
of a Kalman filter.

4.2. Computational complexity

The computational complexity of the proposed I-MSS-KSC
(Algorithm 2) consists of two parts. In the first stage of the
algorithm the MSS-KSC is employed to obtain the initial clusters
representatives. As in MSS-KSC one needs to solve a linear system
of size n×n, therefore the algorithmhasO(n3) training complexity
with naive implementations.

In the second stage which corresponds to updating the clusters
representatives for the arriving data-stream, mainly computing
the kernel matrix, score variables and out-of-sample solutions
vectors contribute to the complexity of the algorithm. As in the
second stage, the number of training points is ntr = Nc (see step
6 of Algorithm 2), the overall complexity of the second stage of
Algorithm 2, neglecting lower order terms, is O(npoints × d × ntr)
with ntr ≪ npoints and d ≪ npoints. Therefore the complexity of
the on-line algorithm is linear with respect to the number of data-
points (npoints) at each time instant.

4.3. Regularizing I-MSS-KSC via Kalman filtering

The Kalman filter, also known as Linear Quadratic Estimator
(LQE), is an algorithm that provides an efficient computational
(recursive) means to estimate the state of a linear dynamical
system from noisymeasurements, in away that the variance of the
estimation error is minimized.

The Kalman filter was introduced in the sixties by Kalman
(1960), and it has been successfully applied to the guidance,
navigation and control of vehicles, particularly aircraft and
spacecraft. In computer vision, the Kalman filter has been
extensively used for tracking objects, and it is precisely in this
context that we apply this tool in order to generate the labels for

2 Ai(k) is the ith cluster at time k.
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Fig. 2. Flow-chart of the incremental multi-class semi-supervised kernel spectral clustering (I-MSS-KSC) algorithm.
Fig. 3. Kalman filter acts as a regularizer for the MSS-KSC algorithm.

objects in motion. As it can be seen in Eq. (5) the third term of the
cost function is influenced by the labels c(ℓ) which are provided
by either the user or a Kalman filter. Therefore the Kalman filter
is reqularizing the solution of the MSS-KSC through c(ℓ) values
associated with the pixels of the objects in motion in a given video
sequence. (See the conceptual diagram in Fig. 3.)

Consider the following discrete-time linear state-space model
of a given dynamical system,

x(k + 1) = Ax(k) + Bu(k) + Gw(k) (11)
y(k) = Cx(k) + v(k)

where x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny are the state, input
and output vectors respectively, A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈

Rny×nx are the matrices defining the system dynamics, G ∈ Rnx×nw

is a weighting matrix and w(k) ∈ Rnw and v(k) ∈ Rny are random
variables that represent the process (model uncertainties) and
measurement (measurement uncertainties) noises respectively.
The process noise w(k) is modeled as a Gaussian white noise
with zero mean and covariance matrix Q ∈ Rnw×nw and the
measurement noise v(k) ismodeled as a Gaussianwhite noisewith
zero mean and covariance matrix R ∈ Rny×ny .

Notice that for control and object tracking purposes, it is
necessary to know the state vector x(k). However, in general, this
vector is not always available. Therefore the use of an estimator
such as the Kalman filter becomes necessary in order to provide
an estimate of x(k) from the inputs and outputs of the system, on
the basis of a mathematical model. The estimate of the state vector
x(k)will be denoted by x̂(k). For the derivation of the Kalman filter
equations, readers are referred to Barrero (2005) and Franklin,
Powell, and Workman (1990). The Kalman filter is summarized
in Algorithm 3,3 where P f(k) is the prior error covariance matrix,
x̂(k) is the estimate of x(k), P(k) is the estimation error covariance
matrix and y(k) is a vector comprising the measurements.

In this work, we use some image processing techniques to
roughly determine the position (measurement) of a moving object
for which we would like to provide a label, and afterwards we

3 Here index k denotes the kth frame.
further improve this position estimate by using a Kalman filter.We
use the following kinetic model to describe the object motion:

sx(k) = sx(k − 1) + Tvx(k − 1) +
T 2

2
ax(k − 1) (12)

vx(k) = vx(k − 1) + Tax(k − 1)

sy(k) = sy(k − 1) + Tvy(k − 1) +
T 2

2
ay(k − 1)

vy(k) = vy(k − 1) + Tay(k − 1)

where T is the sampling time, sx(k), vx(k) and ax(k) are the position,
velocity and acceleration of the object in the x-coordinate, and
sy(k), vy(k) and ay(k) are the position, velocity and acceleration
of the object in the y-coordinate. If we define the state vector
as x(k) = [sx(k), sy(k), vx(k), vy(k)]T , we can write down the
kinematic model in a state-space form as follows:

x(k + 1) = Ax(k) + Ga(k) (13)
y(k) = Cx(k) + v(k)

where

A =

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , G =

T 2/2 0
0 T 2/2
T 0
0 T

 ,

C =


1 0 0 0
0 1 0 0


,

and a = [ax(k), ay(k)]T . Here it is assumed that ax(k) and ay(k)
are normally distributed, with zero mean and standard deviations
σax and σay respectively. Observe that there is no Bu(k) term in the
previous equations given that there are no control inputs. Finally,
the covariance matrices of the process andmeasurement noise are
defined as follows:

Q =


σ 2
ax 0
0 σ 2

ay


, R =


σ 2
mx

0
0 σ 2

my


,

where σmx and σmy are the standard deviations of the measured
position of the object in the x and y coordinates respectively. These
measurements are generated by using some basic image process-
ing techniques (object detection based on color, binarization, com-
putation of centroids, etc.). The interaction between Kalman filter
and I-MSS-KSC algorithm is shown in Fig. 4.

A video sequence consists of several frames see Fig. 5 and each
framewill be treated as batch of new data points for the algorithm.
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Fig. 4. Diagram showing the interaction between Kalman filter and the I-MSS-KSC
algorithm for video segmentation purposes. (For the colored figure, the reader is
referred to the web version of this article.)

Fig. 5. Some of the frames of the second video sequence. Each slice is treated as a
batch of new data points that are fed to the algorithm.

5. Experimental results

In this section, some experimental results are presented to
illustrate the applicability of the proposed I-MSS-KSC algorithm.
In the implementation of Algorithm 2, there are two possibilities:

• I-MSS-KSC (−): the labels (prototypes) are only provided in the
first stage, i.e. just for obtaining the initial cluster representa-
tives and the subsequent set of data points do not have any label
information.

• I-MSS-KSC (+): the user can also provide the labels (prototypes)
for some of the subsequent set of data points.

In order to illustrate the effect of prototypes (labels), we
start with synthetic problems and show the differences between
the obtained results when I-MSS-KSC(+) and I-MSS-KSC(−) are
applied (see Figs. 6 and 8). Next we show the application of I-MSS-
KSC reqularized by a Kalman filter to video segmentation.We used
RBF kernels for all experiments unless otherwise noted.
Algorithm 2: I-MSS-KSC: On-line Semi-supervised clustering
Input: Training data set D , labels Y , the tuning parameters

{γi}
2
i=1, the kernel parameter (if any), number of

clusters Nc , number of prototypes p and number of
available class labels i.e. Q

Output: Cluster membership of test data points

First stage: Initialization of clusters representatives.

1 Read the training data points (initial set of points, k=1).
2 Train the MSS-KSC model using Algorithm 1 and obtain the
cluster membership of the training data points.

3 Calculate the initial cluster representative repX(Ai) and
repα(Ai) for i = 1, · · · ,Nc using Definition 1 and 2.

Second stage: Updating the clusters representatives
for k=2 to the end of the data-stream do

4 Read the set of data points (npoints) at time k,
xi(k), i = 1, ..., npoints.

5 Detect the indices of the outlier points according to Def.
4.

6 Provide the prototypes (protα,j(k), j = 1, ..., p) and form
the codebook matrix CB for the current time instant k:

CB =


repα(Ai(k))


i=1,...,Nc

, protα,j(k)

j=1,...,p

T

∈

R(Nc+p)×Q .

7 Employ the

repX(Ai(k))


i=1,...,Nc


as training points and

calculate the score variables eℓ
i (k), i = 1, ..., npoints for

ℓ = 1, ...,Q using (9).
8 Compute the out-of-sample solution vectors

αi(k), i = 1, . . . , npoints using (10).
9 Form the encoding matrix for the outlier points by

binarizing the obtained αi(k), for all i belonging to the set
of outlier indices. .

10 The unique rows of the encoding matrix obtained in step
9, indicates the number of new clusters at time step k.

11 For non-outlier points, assign xi(k) to cluster q∗, where
q∗

= argminj dEuc(αi(k), CB(j, :). Here dEuc(·, ·) is the
Euclidean distance and the jth row of the matrix CB is
denoted by CB(j, :).

12 Eliminate a cluster if necessary according to Def. 4.
13 Update the cluster representative repX(Ai(k)) and

repα(Ai(k)) according to the Definition 1 and 2.

It should be noted that at new time step k, the algorithm can
receive either batch of data points or one data point. We first
analyze the case that batch of new data points are fed to the
algorithm at each time instant.

5.1. Synthetic data sets

In Fig. 6, there is a cloudof pointswhich canbe clustered in three
groups (red, blue and green). The red and green clusters are static
over time,whereas the blue cluster ismoving toward the other two
clusters and then it returns to its initial position.

Fig. 6, shows the snapshots of the evolution at specific time
instants where one can see the impact of having prototypes in the
incremental semi-supervised clustering. At time instants k = 11
and 12, where the blue cluster is close to the other two clusters,
there are some points that are not correctly clustered using the
I-MSS-KSC(−) algorithm. On the other hand I-MSS-KSC(+) that
uses the prototypes (shown by small-squares in Fig. 6) is able
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Algorithm 3: Kalman filter
Initialization.

1 Provide the initial guess for state vector x̂(0) and the
estimation error covariance matrix P(0).

for k=1 to end do

Time update (prediction)
2 Propagate the state vector x̂(k − 1) one-step ahead,

x̂f(k) = Ax̂(k − 1) + Bu(k − 1)

3 Propagate the covariance matrix P(k− 1) one-step ahead,

P f(k) = AP(k − 1)AT
+ GQGT

Measurement update (correction)
4 Compute the Kalman gain,

L(k) = P f(k)CT 
CP f(k)CT

+ R
−1

5 Update x̂f(k) to x̂(k) by using the measurements y(k),

x̂(k) = x̂f(k) + L(k)

y(k) − Cx̂f(k)


6 Update P f(k) to P(k),

P(k) = (I − L(k)C) P f(k)

to cluster all the data points correctly. Hence incorporating the
prototypes helps to improve the performance. In order to evaluate
the performance of the two I-MSS-KSC(−) and I-MSS-KSC(+)
algorithms quantitatively, the adjusted rand index (ARI) (Halkidi,
Batistakis, & Vazirgiannis, 2001) is used and the obtained results
are tabulated in Table 1. ARI is an external evaluation criterion
which measures the agreement between two partitions and takes
values between zero and one. The higher the value of the ARI the
better the clustering result is. In this example, at new time step
k, the algorithm receives batch of data where the number of data
points is the same as that of time step k − 1. Initially at time step
k = 1, there are 1191 data points forming three clusters. The total
number of labeled data points is 21 and is fixed along all the time
steps. The regularization parameters and the kernel bandwidth are
γ1 = 1, γ2 = 10−3 and σ = 0.7 respectively.

The proposed I-MSS-KSC algorithm is able to detect the creation
of more than one new cluster at the given time step k, when
batch of new data are fed to the algorithm. In the next example4,
we consider the case that three new clusters are created and
eliminated at different time steps. At time step 1, the data set
consists of three clusters as in the previous example (see Fig. 7).
Three other new clusters (clusters 4, 5 and 6) are created at time
step 2. The cluster 4 and 5 are eliminated at time step 10 whereas
cluster 6 disappears at time step 12. Definition 4 is used alongwith
the Algorithm 2 and all the above mentioned events are correctly
detected. Fig. 7, shows the snapshots of the evolution at specific
time instants where clusters are detected and eliminated. A video
of this simulation is provided in the supplementary material (see
Appendix A) of the paper. The number of data points at time step
k = 1 is 1171. In the next step 1371 new data points that form

4 Thedata set can be found in https://sites.google.com/site/smkmhr/Publications.
Table 1
Averaged ARI index over time for the synthetic data points and time-series.

Experiment I-MSS-KSC(−) I-MSS-
KSC(+)

Synthetic data points 0.992 0.999
Synthetic time-series 0.624 0.998

six clusters are fed to the algorithm. This number of data points
is fixed until time step k = 10 where two clusters are eliminated
and therefore the total number of points is 1241 and finally at time
step k = 12 another cluster disappears from this step onward the
number of data points fed into the algorithm at each step is 1171.
The model parameters are γ1 = 1, γ2 = 1 and σ = 1 respectively.

5.2. Synthetic time-series

Weshow the applicability of the proposed I-MSS-KSC algorithm
for on-line time-series clustering. The idea is to cluster signalswith
similar fundamental frequencies using a sliding window approach.
Therefore we have generated two groups of signals with length
600 (each group contains 18 signals)with fundamental frequencies
0.1 rad/s and 0.3 rad/s respectively. Then from time instant k =

200 till k = 400, some of the pure signals of the first group
are contaminated with noise which has the same fundamental
frequency as the other group. The ground-truth of the time-series
are shown in Fig. 8. For I-MSS-KSC, we have labeled one of the
pure signals and a contaminated one from the first group. The
proposed I-MSS-KSC with and without labels has been applied to
cluster the given time-series using a moving window approach.
In this experiment the window size was set to 150. To evaluate
the outcomes of the model, the average adjusted rand index (ARI)
(Halkidi et al., 2001) is used and the results are reported in Table 1.

Here the similarity between the time-series is computed using
the RBF kernel with the correlation distance (Warren Liao, 2005).
The obtained clustering results are compared with the known
ground-truth. The snapshots of the obtained results at certain time
instants, where the signals from the first group have noise, are
depicted in Fig. 9, which shows the advantage of having labels.
From Fig. 9, one can observe that when the labels are not provided
to the algorithm, it mixes things up, some of the signals from
the first group are assigned to the second group and vice versa.
However when the prototypes are used by the algorithm, this
pattern is not observed.

5.3. Real-life video segmentation

In this section the proposed I-MSS-KSC algorithm is tested on
real-life videos5. We compare the performance of the proposed
method with a semi-supervised incremental clustering algorithm
(SemiStream) (Halkidi et al., 2012), incremental K -means (IKM)
(Chakraborty & Nagwani, 2011) and the Efficient Hierarchical
Graph-Based Video Segmentation (EHGB) algorithm proposed in
Grundmann, Kwatra, Han, and Essa (2010).

The approach described inHalkidi et al. (2012) is an incremental
clustering method that exploits the user constraints on data
streams in form of must-link and cannot-link constraints. In our
experiments, this algorithm is initialized by theMSS-KSC approach
(Mehrkanoon et al., 2015). Given the number of constraints we
worked with (around 700), it is difficult to evaluate qualitatively
the segmentation results when the constraints are displayed.
Therefore they are omitted in Figs. 10–13.

5 Thedata set can be found in https://sites.google.com/site/smkmhr/Publications.

https://sites.google.com/site/smkmhr/Publications
https://sites.google.com/site/smkmhr/Publications
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Fig. 6. Synthetic data sets. On-line semi-supervised clustering using the proposed I-MSS-KSC approach implemented in twomodes with andwithout prototypes (i.e. I-MSS-
KSC(−) and I-MSS-KSC(+)). First row: The original data points at different time steps. Second row: I-MSS-KSC(−): The results obtained by I-MSS-KSC algorithm without the
help of any prototypes after the initialization. Third row: The embedded solution vector α when I-MSS-KSC(−) is applied. Fourth row: I-MSS-KSC(+): The results obtained by
the proposed I-MSS-KSC algorithmwith the help of prototypes. Fifth row: The embedded solution vector α when I-MSS-KSC(+) is applied. (For the colored figure, the reader
is referred to the web version of this article.)
K -means is one of the most popular data clustering methods
due to its simplicity and computational efficiency. It works
by selecting some random initial centers and then iteratively
adjusting the centers such that the total within cluster variance
is minimized. In its incremental variant (Incremental K -means),
at each time-step it uses the previous centroids to find the new
cluster centers, thus avoiding to rerun theK -means algorithm from
scratch (Chakraborty & Nagwani, 2011).
The EHGB algorithm is an efficient and scalable technique for
spatio-temporal segmentation of long video sequences using a
hierarchical graph-based algorithm. The algorithm begins with
oversegmenting a volumetric video graph into space–time regions
grouped by appearance. Then a ‘‘region graph’’ over the obtained
segmentation is constructed and this process is repeated over
multiple levels to create a tree of spatio-temporal segmentations
(Grundmann et al., 2010). This algorithm comes with some
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Fig. 7. Synthetic data sets. On-line detection of the creation of more than one cluster at time step k using the proposed I-MSS-KSC(+) approach. At time step k = 2, three
new clusters appear and evolve. Two of them disappear at time step k = 10 and the third one dies out at k = 12. The labels are just provided for the consistent clusters
i.e. the ones that are always present at all the time steps and can possibly evolve over time. The video of this simulation can be found in the supplementary material (see
Appendix A) of the paper.
parameters. In all the experiments, we have selected a minimum
and maximum number of regions which are stated in the
corresponding caption of each of the tested video sequence.
Although the EHGB algorithm does not employ labels, it is one of
the state-of-the-art algorithms for video segmentation that uses
past and future information (in offline mode) in order to segment
the current frame. Also this algorithm uses advanced features,
such as color and flow histograms. It should be noted that our
algorithm uses the previous segmentation results to perform the
segmentation of the current frame. And the algorithm uses only
the color feature as discriminator (local color histograms).

Four real examples are used to test the validity of the proposed
method. The first example shows two bouncing balls and the
second example presents a human’s hand throwing a ball upwards.
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Fig. 8. Ground-truth of the time-series. (a) Signals that are in cluster 1, (a) signals that are in cluster 2.
Fig. 9. Synthetic time-series. On-line semi-supervised clustering using the proposed I-MSS-KSC approach implemented in two modes with and without prototypes
(I-MSS-KSC(−) and I-MSS-KSC(+)). First row: I-MSS-KSC(−): The signals assigned to cluster 1 using the I-MSS-KSC algorithm without the help of any prototypes after
the initialization. Second row: I-MSS-KSC(+): The signals assigned to cluster 1 using I-MSS-KSC algorithm with the help of the prototypes. Third row: I-MSS-KSC(−): The
signals assigned to cluster 2 using the I-MSS-KSC algorithm without the help of any prototypes after the initialization. Fourth row: I-MSS-KSC(+): The signals assigned to
cluster 2 using I-MSS-KSC algorithm with the help of the prototypes.
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Table 2
Videos statistics.

Video width × height # batch data points # of frames Frame rate (frames/s)

Bouncing ball 320 × 180 57600 139 29
Siamak’s hand 320 × 180 57600 395 29
Dominoes 435 × 343 149205 121 29
Birds 1280 × 720 921600 162 29
Table 3
The number of quantization levels, unlabeled/labeled training and validation points
used to obtain the initial cluster representatives.

Video Quantization level Q D Dval

Du DL Dval
u Dval

L

Bouncing ball 10 3 1000 4 1500 3
Siamak’s hand 8 3 800 3 1500 3
Dominoes 15 3 600 3 1500 3
Birds 13 4 1000 4 1500 3

The third video is a video sequence taken from Berkeley video
segmentation data set6 and is called dominoes video and the fourth
video is a high definition video showing birds. Descriptions of the
used videos can be found in Table 2.

In order to extract features from a given frame, a local color
histogram with a 5 × 5 pixels window around each pixel using
minimum variance color quantization is computed. The level of
quantization in general depends on the video under study. The
number of levels used for each of the videos is reported in Table 3.

Theχ2 kernel K(h(i), h(j)) = exp(−
χ2
ij

σ 2
χ
)with parameter σχ ∈ R+ is

used to compute the similarity between two color histograms h(i)

and h(j). Here χ2
ij =

1
2

nq
q=1

(h(i)
q −h(j)

q )2

h(i)
q +h(j)

q
where nq is the number of

quantization levels.
The performance of the proposed I-MSS-KSC model depends

on the choice of the tuning parameters. We set the regularization
parameters γ1 = γ2 = 1 to give equal weights to unlabeled and
labeled data points. The initialσχ (kernel parameter) is tuned using
a grid search in the range [10−3, 101

]. The training and validation
data points, i.e. D and Dval, consist of the histograms of the
chosen pixel (unlabeled data points) together with some labeled
data points. These data points are used for training and validation
respectively to obtain the initial cluster representatives for the first
frame. Then the solution vectors and cluster representatives are
updated in an on-line fashion using Algorithm2 for the subsequent
frames. The number of unlabeled/labeled training and validation
data points used to obtain the initial cluster representatives are
tabulated in Table 3.Weobtain the initialmodel using theMSS-KSC
algorithm trained on the first frame and then I-MSS-KSC is applied

6 ftp://ftp.cs.berkeley.edu/pub/projects/vision/BVDS_train.tar.gz.
to segment the upcoming frames in an on-line fashion. For IKM,
we let the algorithm to initialize itself and the maximum number
of iterations allowed is set to 100.

Both qualitative and quantitative evaluations of the proposed
approaches are provided. For quantitative evaluation of the video
segmentation there is not a unique criterion to evaluate the
performance of the algorithm under study. Several evaluation
criteria are proposed in the literature (Borsotti, Campadelli, &
Schettini, 1998; Tan, Mat Isa, & Lim, 2013). Here two criteria are
used to evaluate the segmentation results. In the first criterion the
segmentation obtained by I-MSS-KSC, EHGB, IKM and SemiStream
are compared in Table 4 with the results of the minimum variance
quantization method (the number of levels is defined by the user)
(Heckbert, 1982) using the Variation of information (VOI) index.
This index measures the distance between two segmentations in
terms of their average conditional entropy. Low values indicate
good match between segmentations (Arbelaez, Maire, Fowlkes, &
Malik, 2011).

In the second criterion, the segmentations obtained by the
above-mentioned approaches are compared in Table 4 with the
original frames using the cluster quality index (CQI) which is
empirically defined in the following lines.

Suppose for a given image I , the segmented image has Nc clus-
ters (regions). We define the quality index per cluster as follows:

QIj = 1 −


i∈{R,G,B}

mean(|P i
j − mi

j|)

3
, j = 1, . . . ,Nc,

where P i
j denotes the ith channel of the RGB color for pixels of the

original image I that belong to cluster j.mi
j is the mean value of P i

j .
Next, the cluster quality index (CQI) for a given image I is heuristi-
cally defined as a weighted sum of the quality index per cluster i.e.

CQI(I) =

Nc
j=1

θjQIj, (14)

where
Nc

j=1 θj = 1. In our setting the highest weight is assigned
to the cluster with minimum QI index. The CQI takes values in the
range [0, 1]. The higher the value of the CQI(I) the better the seg-
mentation is.

The obtained results of the proposed I-MSS-KSC algorithm (with
twomodes of implementation: I-MSS-KSC(−) and I-MSS-KSC(+)),
Incremental K -means, EHGB and SemiStream for some of the
Table 4
Comparison of IKM, SemiStream, EHGB, I-MSS-KSC (−) and I-MSS-KSC (+) in terms of averaged cluster quality and variation of information
indices over the number of frames.

Video Evaluation criterion Method
IKM SemiStream EHGB I-MSS-KSC (−) I-MSS-KSC (+)

Bouncing ball CQI 0.906 0.921 0.875 0.895 0.924
VOI 1.17 0.715 0.839 0.912 0.627

Siamak’s hand CQI 0.872 0.918 0.890 0.919 0.925
VOI 1.08 0.382 1.118 0.494 0.344

Dominoes CQI 0.843 0.865 0.880 0.855 0.866
VOI 1.552 1.581 1.598 1.584 1.352

Birds CQI 0.848 0.868 0.874 0.868 0.868
VOI 0.564 0.341 0.539 0.376 0.376

Note: The higher the value of CQI index the better the segmentation is. The lower the value of VOI, the better the segmentation is.

ftp://ftp.cs.berkeley.edu/pub/projects/vision/BVDS_train.tar.gz
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Fig. 10. Bouncing balls video. On-line video segmentation results using the proposed I-MSS-KSC, IKM (Chakraborty & Nagwani, 2011) and EHGB (Grundmann et al., 2010).
First row: The original frames. Second row: The segmentation results obtained by on-line IKM. Third row: The segmentation results obtained by SemiStream approach (Halkidi
et al., 2012) initialized with MSS-KSC (Mehrkanoon et al., 2015), Notice that the must-link and cannot-link constraints are not shown. Fourth row: The segmentation results
obtained by EHGB approach (Grundmann et al., 2010) with Min/Max Number of regions = 10/200. Fifth row: The segmentation results obtained by the proposed I-MSS-KSC
algorithm without the help of any labeled pixels after the first frame i.e. I-MSS-KSC(−) mode. Sixth row: The results of the proposed I-MSS-KSC algorithm when labeled
pixels for two clusters are provided during on-line segmentation, i.e. I-MSS-KSC(+) mode.
frames of the bouncing-ball and Siamak’s hand videos are depicted
in Figs. 10 and 11 respectively (the videos of these simulations
are presented in the supplementary material (see Appendix A) of
the paper). Figs. 10 and 11, show that it is possible to improve
the performance of the video segmentation by incorporating
prototypes. Note that for the first video sequence, one of the ball
and the table are the objects of interest. Since the table is static,
the labels are provided by the user and they are fixed through out
the video sequence. Whereas the ball’s prototype is provided by
a Kalman filter. Here one may notice that I-MSS-KSC(+) makes it
possible to improve the performance by carrying the object labeled
through out the video sequence. The labeled pixels of the objects
are shown by red and white asterisks (∗). The obtained results of
the proposedmethod (I-MSS-KSC(+)), IKM, EHGB and SemiStream
for the third video are shown in Fig. 12 (the video of this simulation
is provided in the supplementary material (see Appendix A) of the
paper). Fig. 12 indicates that the on-line segmentation results can
be improved when the labels are incorporated into the algorithm.
In Fig. 12, the labeled pixels of the objects are shown by yellow and
white asterisks (∗). The segmentation of the Birds video using the
above-mentioned algorithms is shown in Fig. 13. In this video at
each time instant 921600 data points are analyzed.

6. Particular case: one-by-one

In case that the data points arrive one by one, the proposed
algorithm 2 is still applicable but few modifications are needed.
Assuming that a new data point xnew is fed to the algorithm, then
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Fig. 11. Siamak’s hand video. On-line video segmentation results using the proposed I-MSS-KSC, IKM (Chakraborty & Nagwani, 2011) and EHGB (Grundmann et al., 2010).
First row: The original frames. Second row: The segmentation results obtained by on-line IKM. Third row: The segmentation results obtained by SemiStream approach (Halkidi
et al., 2012) initialized with MSS-KSC (Mehrkanoon et al., 2015), Notice that the must-link and cannot-link constraints are not shown. Fourth row: The segmentation results
obtained by EHGB approach (Grundmann et al., 2010) with Min/Max Number of regions = 10/200. Fifth row: The segmentation results obtained by the proposed I-MSS-KSC
algorithmwithout the help of any labeled pixels after the first frame, i.e. I-MSS-KSC(−) mode. Sixth row: The results of the proposedMSS-KSC algorithmwhen labeled pixels
for two clusters are provided during on-line segmentation, i.e. I-MSS-KSC(+) mode.
the following formula is used to update the cluster representatives
in both X and α-spaces (line 11 of Algorithm 2):

repX(Ai(k)) = µ · repX(Ai(k − 1)) + (1 − µ)xnew
repα(Ai(k)) = µ · repα(Ai(k − 1)) + (1 − µ)αnew,

where µ ∈ [0, 1]. In addition, line 10 of Algorithm 2 which
corresponds to cluster elimination is deactivated. We applied the
algorithm to two real data sets Iris and Wine from UCI repository.
Wine data set contains three types of wine described by three
classes. These data are the results of a chemical analysis of wines
produced in the same region in Italy but derived from three
different cultivators. The Iris data set is composed of three types
of iris plant. One class is linearly separable from the other two;
the latter are not linearly separable from each other (Asuncion &
Newman, 2007).

Initially the model is trained only using the data points (labeled
and unlabeled) from the first two classes. When an unlabeled new
data point arrives, the algorithm decides whether the new point
belongs to one of the existing classes or a new class should be
created. For the experiment conducted on the Wine and Iris data
sets, all the arriving new points were unlabeled (I-MSS-KSC(−)).

The number of training/test data points and the obtained results
over 5 simulation runs are tabulated in Table 5. These data sets are
not linearly separable and there is an overlap between two of the
classes (class 2 and 3). The creation of the new class is based on
the user defined threshold ϵ (see Definition 4). However as we are
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Fig. 12. Dominoes video. On-line video segmentation results using the proposed I-MSS-KSC, IKM (Chakraborty & Nagwani, 2011) and EHGB (Grundmann et al., 2010).
First row: The original frames. Second row: The segmentation results obtained by on-line K -means. Third row: The segmentation results obtained by SemiStream approach
(Halkidi et al., 2012) initialized withMSS-KSC (Mehrkanoon et al., 2015), Notice that the must-link and cannot-link constraints are not shown. Fourth row: The segmentation
results obtained by EHGB approach (Grundmann et al., 2010) with Min/Max Number of regions = 10/100. Fifth row: The segmentation results obtained by the proposed
I-MSS-KSC algorithm without the help of any labeled pixels after the first frame i.e. I-MSS-KSC(−) mode. Sixth row: The results of the proposed I-MSS-KSC algorithm when
labeled pixels for two clusters (objects) are provided during on-line segmentation. Note that one object is static and therefore its labels will be static and can be provided by
the user.
Table 5
The number of unlabeled/labeled training points used to obtain the initial cluster
representatives. The averaged accuracy on the test is reported.

Dataset # classes Dimension D D test Accuracy
Du DL

Iris 3 4 17 33 100 0.81 ± 0.04
Wine 3 13 22 43 113 0.90 ± 0.08

in the semi-supervised setting, the possibility of incorporating the
user labels of the third class into the algorithm is also an option.
7. Conclusions

In this paper, a new incremental multi-class semi-supervised
algorithm is proposed. It uses the multi-class semi-supervised
kernel spectral clustering (MSS-KSC) as core model. The update
of the solution vectors and the memberships are obtained using
the out-of-sample solution property of the MSS-KSC approach.
The user labels or labels provided by a Kalman filter are in-
corporated into the algorithm in an on-line fashion to improve
the performance of the I-MSS-KSC. The validity and applicabil-
ity of the proposed method is shown on synthetic data sets
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Fig. 13. Birds video. On-line video segmentation results using the proposed I-MSS-KSC, IKM (Chakraborty & Nagwani, 2011) and EHGB (Grundmann et al., 2010). First row:
The original frames. Second row: The segmentation results obtained by on-line K -means. Third row: The segmentation results obtained by SemiStream approach (Halkidi
et al., 2012) initialized with MSS-KSC (Mehrkanoon et al., 2015), Notice that the must-link and cannot-link constraints are not shown. Fourth row: The segmentation results
obtained by EHGB approach (Grundmann et al., 2010) with Min/Max Number of regions = 10/100. Fifth row: The segmentation results obtained by the proposed I-MSS-KSC
algorithm without the help of any labeled pixels after the first frame i.e. I-MSS-KSC(−) mode. Sixth row: The results of the proposed I-MSS-KSC algorithm when labeled
pixels for two clusters are provided during on-line segmentation.
and some real-life videos sequences. For the video segmenta-
tion test cases, the results obtained by the proposed I-MSS-KSC
algorithm is compared with those of the incremental K -means
(IKM) (Chakraborty & Nagwani, 2011), the Efficient Hierarchical
Graph-Based Video Segmentation algorithm (EHGB) (Grundmann
et al., 2010) and the semi-supervised incremental clustering al-
gorithm (SemiStream) (Halkidi et al., 2012). In general our re-
sults obtained by the proposed I-MSS-KSC approach outperforms
the incremental K -means (IKM) (Chakraborty & Nagwani, 2011)
and comparable with the ones of the EHGB approach. In addi-
tion as opposed to SemiStream that uses many must-link and
cannot-link constrains,weworkwith fewuser defined labeled data
points (prototypes)which act as attractors for other unlabeled data
points.
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Appendix A. Supplementary material

The experimental findings and the demonstrative videos
associated with this paper can be found in the on-line version at
ftp://ftp.esat.kuleuven.be/stadius/siamak/155-spt.zip.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.neunet.2015.08.001.
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