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Abstract—This paper introduces a methodology to incorpo-
rate the label information in discovering the underlying clusters
in a hierarchical setting using multi-class semi-supervised clus-
tering algorithm. The method aims at revealing the relationship
between clusters given few labels associated to some of the
clusters. The problem is formulated as a regularized kernel
spectral clustering algorithm in the primal-dual setting. The
available labels are incorporated in different levels of hierarchy
from top to bottom. As we advance towards the lowers levels
in the tree all the previously added labels are used in the
generation of the new levels of hierarchy. The model is trained
on a subset of the data and then applied to the rest of the data in

a learning framework. Thanks to the previously learned model,
the out-of-sample extension property of the model allows then
to predict the memberships of a new point. A combination of
an internal clustering quality index and classification accuracy
is used for model selection. Experiments are conducted on
synthetic data and real image segmentation problems to show
the applicability of the proposed approach.

I. INTRODUCTION

IN many applications, ranging from data mining to ma-

chine perception, labeled data is often sparse because

it is both time consuming and costly to obtain. Therefore

in many cases one encounters a large amount of unlabeled

data while the labeled data are rare. So the first challenge is

to be able to make use of labeled data points to boost the

performance with respect to a purely unsupervised algorithm.

In these cases one may consider the semi-supervised learning

framework which concerns the problem of learning in the

presence of both labeled and unlabeled data [1], [2], [3], [4].

The second challenge is how to associate the discovered

clusters. In many application from biological data to web

image organization, there would be a large number of clusters

and sub-clusters. Some of sub-clusters may be relevant and

of the others may belong to a more general cluster. In

addition, some of the sub-clusters may or may not have

labels. Therefore the incorporation of the available labels for

presenting a relationship between clusters in a hierarchical

fashion would be necessary.

Most of the developed semi-supervised approaches attempt

to improve the performance by incorporating the information

from either the unlabeled or labeled part. Among them are

graph based methods that assume that neighboring point pairs

with a large weight edge are most likely within the same clus-

ter. The Laplacian support vector machine (LapSVM) [5], a

state-of-the-art method in semi-supervised classification, is

one of the graph based methods which provides a natural

out-of-sample extension.
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Some semi-supervised clustering methods have been fo-

cused on the use of side-information in the form of instance

level must-link and cannot-link constraints. A must-link

(ML) constraint enforces that two instances must be placed in

the same cluster while a cannot-link (CL) constraint enforces

that two instances must not be placed in the same cluster.

However, both ML and CL constraints are not suitable for

hierarchical clustering methods since objects are linked over

different hierarchy levels [6], [7].

Spectral clustering methods belong to a family of unsuper-

vised learning algorithms that make use of the eigenspectrum

of the Laplacian matrix of the data to divide a dataset

into natural groups such that points within the same group

are similar and points in different groups are dissimilar to

each other [8], [9], [10]. In this approach the eigenvectors

become a new representation of the data, where the clusters

form a localized structure. Finding the final grouping in the

eigen-space is typically done by applying simple clustering

techniques such as k-means.

Kernel spectral clustering (KSC) is an unsupervised algo-

rithm introduced in [11]. The primal problem of the kernel

spectral clustering is formulated as a weighted kernel PCA

[12]. In contrast to classical spectral clustering, there is a

systematic model selection scheme for tuning the parameters

and also the extension of the clustering model to out-

of-sample points is possible. KSC provides a partitional

clustering, i.e. the dataset is decomposed into a number

of disjoint clusters which are optimal in terms of some

predefined internal quality index. However in some appli-

cations, a more informative hierarchical representation of

the data is desirable. Hierarchical clustering groups the data

points into a hierarchical tree-like structure using bottom-

up or top-down approaches. The authors in [13] introduced

Hierarchical Kernel Spectral Clustering where the Fisher

criterion is used to reveal the hierarchical structure of the

data.

A binary semi-supervised classification formulation is

proposed in [14]. A non-parallel semi-supervised classifiers

that generates two non-parallel hyperplanes by learning from

both labeled and unlabeled data points is introduced in [15].

Recently Mehrkanoon et al. [16] proposed a multi-class

semi-supervised algorithm (MSS-KSC) where KSC is used

as a core model. MSS-KSC is a regularized version of KSC

which aims at incorporating the information of the labeled

data points in the learning process. The method can be

applied for both semi-supervised classification and clustering

and uses a low-dimensional embedding. In the MSS-KSC

approach, one needs to solve a linear system of equations

to obtain the model parameters. Therefore with n number of

training points, the algorithm has O(n3) training complexity



with naive implementations. The MSS-KSC model can be

trained on a subset of the data (training data points) and

then applied to the rest of the data in a learning framework.

Thanks to the previously learned model, the out-of-sample

extension property of the MSS-KSC model allows then to

predict the memberships of a new point. Moreover, as it has

been shown in [17], it can scale to large data sets.

It is the purpose of this paper to develop a hierarchical

clustering (HMSS-KSC) based on the semi-supervised KSC

approach. We show how one can incorporate the available

side-information (labels) in different hierarchy levels. The

hierarchical representation is based on the internal clus-

ter validation index which quantifies the goodness of the

clustering. The cluster validation index can reveal several

clustering model parameters leading to good clusterings.

In the final stage, these clustering results are combined to

display the underlying cluster hierarchies and relation among

clusters found. This can play an important role in discovering

multiscale structure present in the data.

This paper is organized as follows. In Section II, classi-

cal hierarchical clustering methods are briefly reviewed. In

Section III, an overview of the multi-class semi-supervised

clustering (MSS-KSC) algorithm is given. The hierarchical

semi-supervised clustering HMSS-KSC is described in Sec-

tion IV. In Section V, experimental results are given in order

to confirm the validity and applicability of the proposed

method.

II. HIERARCHICAL CLUSTERING

In the classical hierarchical clustering, a dendrogram is

obtained based on a dissimilarity measure between each pair

of observations and most often the Euclidean distance is

used. The algorithm proceeds iteratively by starting at the

bottom of the dendrogram, where each of the observations

is treated as one cluster. Then the two clusters that are most

similar to each other are merged.

Pairs of clusters are then merged as the hierarchy goes up

in the tree. Each merge is represented by a horizontal line

and the y-axis indicates the similarity (or dissimilarity) of the

two merging clusters. The algorithm proceeds in this fashion

until all of the observations belong to one single cluster.

The linkage measure, which defines the dissimilarity between

two groups of observations, determines which clusters should

fuse. The four most common types of linkage are complete,

average, single and centroid.

Single linkage computes the minimal intercluster dissimi-

larity and is a local criterion taking into account only the zone

where the two clusters are closest to each other. Complete

linkage computes the maximal intercluster dissimilarity and

is a non-local criterion giving preference to compact clusters.

Both single and Complete have been reported to have some

drawbacks. This Single criterion suffers from an undesirable

effect called chaining. Chaining causes unwanted elongated

clusters since the overall shape of the formed clusters is not

taken into account. On the other hand the complete linkage

also suffers from high sensitivity to outlying data points.

Average linkage which computes the mean intercluster dis-

similarity is a specialized method trying to find a compromise

between single and complete linkage.

The authors in [13] proposed a methodology based on

KSC to discover cluster hierarchies. The BLF [11] criterion is

used to select the optimal model parameter pairs i.e. number

of clusters k and kernel bandwidth σ. In this paper we will

propose a new method for reveal the underlying hierarchical

structure of the data given a few amount of labeled data

points based on MSS-KSC briefly reviewed in Section III.

III. SEMI-SUPERVISED CLUSTERING USING MSS-KSC

Consider training data points

D = {x1, ..., xn
UL

︸ ︷︷ ︸

Unlabeled
(DU )

, xn
UL

+1, .., xn
︸ ︷︷ ︸

Labeled
(DL)

}, (1)

where {xi}
n
i=1 ∈ R

d. The first n
UL

data points do not have

labels whereas the last nL = n − n
UL

points have been

labeled. Assume that there are Q classes, then the label

indicator matrix Y ∈ R
nL×Q is defined as follows:

Yij =

{
+1 if the ith point belongs to the jth class

−1 otherwise.
(2)

The Multi-class semi-supervised KSC (MSS-KSC) described

in [16] is formulated as follows:

min
w(ℓ),b(ℓ),e(ℓ)

1

2

Q
∑

ℓ=1

w(ℓ)Tw(ℓ) −
γ1

2

Q
∑

ℓ=1

e(ℓ)
T
V e(ℓ)+

γ2

2

Q
∑

ℓ=1

(e(ℓ) − c(ℓ))T Ã(e(ℓ) − c(ℓ))

subject to e(ℓ) = Φw(ℓ) + b(ℓ)1n, ℓ = 1, . . . , Q,

(3)

where cℓ is the ℓ-th column of the matrix C defined as

C = [c(1), . . . , c(Q)]n×Q =

[
0n

UL
×Q

Y

]

n×Q

, (4)

where 0n
UL

×Q is a zero matrix of size n
UL
× Q and Y is

defined as previously. The matrix Ã is defined as follows:

Ã =

[
0n

UL
×n

UL
0n

UL
×nL

0nL×n
UL

InL×nL

]

,

where InL×nL
is the identity matrix of size nL × nL. V is

the inverse of the degree matrix defined as previously.

Since in (3) the feature map ϕ is in general assumed to

be not explicitly known, one uses the kernel trick and solves

the problem in the dual. The Lagrangian of the constrained

optimization problem (3) becomes

L(w(ℓ), b(ℓ), e(ℓ), α(ℓ)) =
1

2

Q
∑

ℓ=1

w(ℓ)Tw(ℓ) −
γ1

2

Q
∑

ℓ=1

e(ℓ)
T
V e(ℓ)

+
γ2

2

Q
∑

ℓ=1

(e(ℓ) − c(ℓ))T Ã(e(ℓ) − c(ℓ))+

Q
∑

ℓ=1

α(ℓ)T
(

e(ℓ) − Φw(ℓ) − b(ℓ)1n

)

,



where α(ℓ) is the vector of Lagrange multipliers. Then the

Karush-Kuhn-Tucker (KKT) optimality conditions are as

follows,







∂L
∂w(ℓ) = 0→ w(ℓ) = ΦTα(ℓ), ℓ = 1, . . . , Q,

∂L
∂b(ℓ)

= 0→ 1Tnα
(ℓ) = 0, ℓ = 1, . . . , Q,

∂L
∂e(ℓ)

= 0→ α(ℓ) = (γ1V − γ2Ã)e
(ℓ) + γ2c

(ℓ), ℓ = 1, . . . , Q,

∂L
∂α(ℓ) = 0→ e(ℓ) = Φw(ℓ) + b(ℓ)1n, ℓ = 1, . . . , Q.

(5)

Elimination of the primal variables w(ℓ), e(ℓ) and making

use of Mercer’s Theorem [18], results in the following linear

system in the dual [16]:

γ2

(

In−
R1n1

T
n

1TnR1n

)

c(ℓ) = α(ℓ)−R

(

In−
1n1

T
nR

1TnR1n

)

Ωα(ℓ), (6)

where R = γ1V − γ2Ã. As is is shown in [16], given Q

labels the approach is not restricted to finding just Q classes

and instead is able to discover up to 2Q hidden clusters.

In addition, it uses low embedding dimension to reveal the

existing number of clusters which is important when one

deals with large number of clusters. In fact one maps the

data points to a Q-dimensional space, which from now on

will be referred to as α-space, and the solution vectors α(ℓ)

(ℓ = 1, · · · , Q) represent the embedding of the input data

in this space. Therefore every point xi is associated with

the point [α
(1)
i , · · · , α

(Q)
i ] in the α-space. (space spanned by

the solution vector α(ℓ)). The MSS-KSC algorithm [16] is

summarized in Algorithm 1.

IV. HIERARCHICAL SEMI-SUPERVISED CLUSTERING

A. Methodology

The kernel spectral clustering (KSC) algorithm proposed

in [11] is provided with a model selection procedure based

on the Balanced Line Fit (BLF) criterion. It can be shown

that in the ideal situation of well separated clusters, the

data projections (score variables ei) associated with the KSC

formulation, form lines one per each cluster. The shape of

the data points in the projections space, is exploited by the

BLF criterion to select the optimal clustering parameters e.g.

the number of clusters (k) and the kernel bandwidth σ. The

BLF criterion is defined as follows:

BLF(DVal, k) = ηlinefit(DVal, k) + (1 − η)balance(DVal, k)
(7)

where DVal represents the validation set and k indicates the

number of clusters. The linefit index equals 0 when the score

variables are distributed spherically and equals 1 when the

score variables are collinear, representing points in the same

cluster. The balance index equals 1 when the clusters have

the same number of elements and tends to 0 in extremely

unbalanced cases. The parameter η controls the importance

given to the linefit with respect to the balance index and takes

values in the range [0, 1].

Algorithm 1: MSS-KSC approach [16]

Input: Training data set D, labels Y , the tuning

parameters {γi}
2
i=1, the kernel parameter (if

any), number of clusters k, the validation set

Dval = {xval
i }

Nval

i=1 and number of available

class labels i.e. Q

Output: Cluster membership of validation data points

Dval

1 Solve the dual linear system (6) to obtain {αℓ}Qℓ=1 and

compute the bias term {bℓ}Qℓ=1.

2 Binarize the solution matrix

Sα = [sign(α(1)), . . . , sign(α(Q))]M×Q, where

αℓ = [αℓ
1, . . . , α

ℓ
M ]T .

3 Form the codebook CB = {cq}
p
q=1, where

cq ∈ {−1, 1}
Q, using the k most frequently occurring

encodings from unique rows of solution matrix Sα.

4 Estimate the score variables for the validation data

points {e
(ℓ)
val}

Q
ℓ=1.

5 Binarize the validation projections and form the

encoding matrix [sign(e
(1)
val), . . . , sign(e

(Q)
val )]Nval×Q for

the test points (Here eℓval = [eℓval,1, . . . , e
ℓ
val,Nval

]T ).

6 ∀i, assign xval
i to class/cluster q∗, where

q∗ = argmin
q

dH(eℓval,i, cq) and dH(·, ·) is the Hamming

distance.

It was shown in [13] that the BLF criterion has multiple

peaks corresponding to different values of kernel parameter

σ for given number of clusters k. For the semi-supervised

setting, given the fact that Q labels are available and we can

detect maximum up to 2Q clusters (see [16]), the criterion

introduced in [16] is employed on the cluster intervals [2i−1+
1, 2i] for i = 2, . . . , Q to detect the ideal number of clusters

k for each level of hierarchy in the given dataset.

Therefore a grid search over different values of k ∈
[2i−1+1, 2i] and σ evaluating the internal Cluster Validation

Index (CVI) on validation data is performed. The parameter

pairs (k, σ) for which the CVI is larger than a specified

threshold value θ are selected. Here θ is set to three fourths

of a maximum value of CVI. We then build the MSS-

KSC model using the optimal parameter pairs (k,σ) and

obtain the cluster memberships for all the points using the

out-of-sample extensions property. The flow-chart of the

proposed algorithm is shown in Fig. 1. In constructing the

hierarchy we start with a large number of values of k and

afterwards moving to intervals with smaller value of k. Thus

the hierarchy of clusters are obtained in a bottom-up fashion.

The proposed methodology is outlined in Algorithm 2. In

Algorithm 2, a small portion of the data points is used as

training set for learning the model. Considering that the

total number of data points is N and we only work with

n training points, n ≪ N , the computational complexity of

the HMSS-KSC algorithm is O(n3+Nn). In agglomerative

hierarchical clustering algorithms like linkage techniques,



one starts with the whole dataset and therefore at the lowest

level of hierarchy the complexity for obtaining the pairwise

similarities becomes O(N2).

Algorithm 2: Hierarchical MSS-KSC

Input: Training data set D, labels Y , set of r values

for the kernel parameter σ ∈ {σ1, . . . , σr},
number of available class labels i.e. Q

Output: Cluster membership of validation data points

Dval

1 for i← 1 to Q do

2 cluster-range=[2i−1 + 1, 2i]
3 for k ∈ cluster-range do

4 ∀ combination of parameter pairs (k, σ) where
σ ∈ [σ1, . . . , σr] train the MSS-KSC algorithm

1 with i labels.

5 Find the maximum value of the cluster quality

index (CQI) over the range σ values.

6 If the maximum value of CQI is greater than the

threshold θ, select the optimal parameter pairs

(k∗, σ∗) and build a level of cluster hierarchy

7 Use the training data D and (k∗, σ∗) to train the

MSS-KSC in algorithm 1 and compute the

out-of-sample extension for the test points.

8 return The cluster memberships for all the selected

levels of hierarchy.

B. Hierarchical semi-supervised representation

After obtaining the clusters for each level of hierarchy,

a specialized linkage criterion similar to the that described

in [13] determines which clusters are merging based on

the evolution of the cluster memberships as the hierarchy

goes up. The y-axis of the dendrogram represents the scale

and corresponds to the value of the kernel parameter σ at

which the merge occurs. During the merging, some data

points of the merging clusters might go to a non-merging

cluster. The remaining data points are then forced to join the

merging cluster of the majority. Each leaf of the dendrogram

represents one cluster. However, as we move up the tree,

some leaves begin to fuse into branches. These correspond

to clusters that are similar to each other. As the number

of clusters k increases, more complex models are needed

to discover the structure of the data, therefore usually the

optimal kernel bandwidth σ decreases. Usually the clusters

that appears lower in the dendrogram are more complex and

clusters that fuse later (near the top of the tree) are less

complex.

The available side-information (labeled data points) is

improving the clustering results. In order to show how the

labels are incorporated into the results of a hierarchy, for

levels of the resulting tree that labels are used, we also plot

the labels to indicate the presence of the labels as we go

down the tree. As the MSS-KSC algorithm is able to find up

to 2Q clusters when Q labels is used, some of the levels in

the tree will not have labels but still the algorithm is able to

discover the hidden clusters present in the dataset.

V. NUMERICAL EXPERIMENTS

In this section, some experimental results are presented to

illustrate the applicability of the proposed hierarchical MSS-

KSC algorithm. In order to illustrate the effect of prototypes

(labels), we start with two synthetic problems and show how

the labels can be incorporated to the learning process and

affects the clustering results. Next we show the experimental

results on some color images from the Berkeley image data

set 1. For the Berkeley images data set for which the ground

truth segmentations are known, the segmentations obtained

by HMSS-KSC and are compared with the ground truth

in Table II. The following semi-supervised model selection

criterion.

argmax
γ1,γ2,σ

κCLP(γ1, γ2, σ) + (1− κ)Acc(γ1, γ2, σ) (8)

where CLP and Acc stand for clustering performance and

classification accuracy respectively. κ ∈ [0, 1] is a user-

defined parameter that controls the trade-off between the

importance given to unlabeled and labeled samples. A com-

mon approach for evaluation of clustering results is to use

cluster validity indices [19], [9], [8]. Any internal clustering

validity approach such as Silhouette index [20], Davies-

Bouldin index (DB) or BLF [11] can be utilized. In this

paper the Silhouette index is used.

A. Synthetic data sets

We start with a synthetic data set consisting of six well

separated Gaussians. Some labeled data points from three

of them are available (see Fig. 2). The labels are feed to

the algorithm at different levels of the tree. Fig. 2(g) shows

the order of presenting the labels. First the information of

the labeled point shown by � is used at the top most level.

In the next level the data point denoted by △ is provided

which enables the algorithm to discover up to 4 clusters. The

selection of number of clusters is performed which indicates

that three clusters is a good candidate (according to the

model selection criterion (8). Next the last label ∗ is used

and therefore the blue cluster splits in two. At this point that

all three labels are presented to the algorithm, ideally up to

eight clusters can be found. Hence the other hidden clusters

that have no labels are also detected. From Fig. 2(g), one

may notice that, two splits happened at the same level (using

the same kernel bandwidth σ). Although this is no longer a

dendrogram but a tree structure, one still can think of the

splitting order (merge order). This pattern depends on the

structure of the data under study and the more nonlinear the

clusters, the less likely that it occurs.

In Fig. 3, there is a happy face which can be clustered into

five groups based on their colors. We provide three labels

from three clusters (the background, the face and the eyes).

The first label from the background is used at the top level

of tree to partition the image into two groups. In the next

1Available at: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/



Q labels for Q

classes are available

labels of 1st

and 2nd classes
labels of the 1st class

labels of (1st,

2nd,...,Qth) classes

number of cluster ∈ {3, 4}number of cluster ∈ {2}
number of cluster

∈ {2Q−1 + 1, 2Q}

selection of the optimal

parameter pairs σ, k

selection of the optimal

parameter pairs σ, k

selection of the optimal

parameter pairs σ, k

Fusing the results for building the cluster hierarchies

Discovering up to 4 clustersDiscovering up to 2 clusters Discovering up to 2Q clusters

Model selectionModel Selection Model selection

Fig. 1. Flow-chart of the Hierarchical Multi-class Semi-Supervised Kernel Spectral Clustering (HMSS-KSC) algorithm.

level the label of the face is added. Therefore totally there

will be two labels present for the algorithm and thus up to

four clusters can potentially be detected. Next we feed the

last label, which indicates one of the eyes of the face, to the

algorithm. Given that three labels are now provided up to

eight clusters can be detected. The optimal model parameters,

number of clusters k and kernel bandwidth σ are obtained

based on the (8).

B. Hierarchical Image segmentation

Image segmentation is a difficult task for spectral cluster-

ing due to the fact that the number of data points is large and

therefore leading to eigen-decomposition of a big matrix. As

it has been shown in [16], by incorporating side-information

(labels in this case) to the unsupervised model, it is possible

to improve the result of the unsupervised algorithm. Here we

show how one can incorporate the labels in different levels

of hierarchy from top to bottom to discover the multiscale

structure of the given image. Experimental results on some

color images from the Berkeley image data set [21] are

shown in Fig. 5. For each image, a local color histogram

with a 5 × 5 local window around each pixel is computed

using minimum variance color quantization of eight levels.

A subset of 500 unlabeled pixels together with some labeled

pixels (see Table I) are used for training and the whole image

for testing.

TABLE I

NUMBER OF LABELED AND UNLABELED DATA POINTS USED FOR

TRAINING AND VALIDATION OF THE MODEL. Q IS THE NUMBER OF

CLASS LABELS.

D Dval

Image ID Q Du DL Du DL

295087 3 500 8 3000 5
25098 3 500 6 3000 3
153072 3 500 14 3000 4
151087 3 500 6 3000 4

A comparison of the proposed method against classical

hierarchical clustering, Linkage methods, including Average

and Median Linkage (AL and ML), in terms of F-score is

shown in Table II. Here the F-score is defined as F-score =
ARI
DB

where ARI stands for the Adjusted Rand Index [22]

and DB is the Davies Bouldin index [23]. Higher F-score

values correspond to better quality clusters. It should be

noted that the proposed HMSS-KSC is trained on a subset

of the data set and the memberships of the entire data set

is predicated based on the trained model. Whereas average

and median linkage use the whole data set for obtaining

the hierarchical results. The ground truth segmentations
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Fig. 2. (a): Labeled data set used for the HMSS-KSC algorithm, labels are denoted by ∗,△,� (b-f): Segmented data sets in different levels of hierarchy
using the proposed approach. (g): The evolution of the clusters for top-down hierarchy.
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Fig. 3. (a): Original image (b): Labeled image used in the HMSS-KSC algorithm, labels are denoted by ∗,△,� (c-f): Segmented image in different levels
of hierarchy using the proposed approach. (g): The evolution of the clusters for top-down hierarchy.



(human segmentation) of the images with different levels are

provided in [21]. We have compared the obtained levels of

hierarchy of the three algorithms with all of the available

ground truth levels. The maximum F-score for each of the

hierarchical levels is reported in Table II which shows the

superiority of the HMSS-KSC compared to AL and ML

algorithms even though a subset of a given image is used

for training the HMSS-KSC model. In addition HMSS-KSC

capitalizes on the labels incorporated at different levels of

hierarchy.
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Fig. 4. The evolution of the clusters for top-down hierarchy for three
images with ID=100007, 153077 and 151087.

VI. CONCLUSIONS

In this paper, a semi-supervised hierarchical clustering

algorithm is proposed that is able to discover the relation

between clusters at different levels of hierarchy by integrating

the available side-information (labels) into the analysis. The

method has the out-of-sample extension property making it

applicable for large data sets, by training only on a subset of

data sets and predict the memberships of the rest based on

the trained model. The algorithm is tested on real image data

set and in most cases it outperforms the classical hierarchical

clustering.
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TABLE II

COMPARISON OF HMSS-KSC, AVERAGE AND MEDIAN LINKAGE METHODS (AL, ML) FOR IMAGE SEGMENTATIONS IN TERMS OF F-SCORE INDEX

Ground Truth 295087 25098 153072 151087

Level HMSS-KSC AL ML HMSS-KSC AL ML HMSS-KSC AL ML HMSS-KSC AL ML

1 0.35 0.15 0.13 0.17 0.25 0.18 0.02 0.01 0.01 0.16 0.14 0.17

2 0.30 0.16 0.21 0.10 0.04 0.12 0.02 0.01 0.01 0.16 0.14 0.13

3 0.32 0.14 0.14 0.08 0.08 0.08 0.19 0.16 0.17 0.15 0.13 0.14

4 0.28 0.12 0.10 0.08 0.08 0.06 0.05 0.03 0.03 0.15 0.12 0.13

5 0.32 0.13 0.14 0.07 0.07 0.07 0.06 0.05 0.04 0.16 0.14 0.12

Note: The higher the value of F-score the better the segmentation is.

ID 1 2 295087 25098 153077 151087
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Fig. 5. Hierarchical image segmentation results using the proposed method. A subset of 500 and 3000 randomly chosen pixel histograms (unlabeled data points) together with

some labeled data points are used for training and validation respectively. The whole image is used for testing. The labeled image is shown in the first row. The segmentation

results obtained by the proposed HMSS-KSC for different levels of hierarchy are shown in the second-sixth rows.


