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Abstract

Room impulse responses (RIRs) are used in several applications, such as augmented reality and virtual reality.
These applications require a large number of RIRs to be convolved with audio, under strict latency constraints.
In this paper we consider the compression of RIRs, in conjunction with fast time-domain convolution. We
consider three different methods of RIR approximation for the purpose of RIR compression, and compare them
to state-of-the-art compression. The methods are evaluated using several standard objective quality measures,
both channel-based and signal-based. We also propose a novel low-rank-based algorithm for fast time-domain
convolution, and show how the convolution can be carried out without the need to decompress the RIR.
Numerical simulations are performed using RIRs of different lengths, recorded in three different rooms. It is
shown that compression using low-rank approximation is a very compelling option to the state-of-the-art Opus
compression, as it performs as well or better than on all but one considered measure, with the added benefit of
being amenable to fast time-domain convolution.
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1 Introduction
Modeling the acoustics of a room as a linear time-
invariant system, the room impulse response (RIR)
describes the impact of the room on an acoustic ex-
citation signal, from a certain source position to a
certain receiver position. The availability of the RIR,
or an accurate estimate thereof, is imperative to a
multitude of acoustic signal processing tasks, such as
source localization [1], speech dereverberation [2], au-
ralization [3, 4], source separation [5], listening room
compensation [6], and echo cancellation [7]. There are
several ways of modeling the RIR. Among the more
popular ones are the infinite impulse response (IIR)
(see e.g., [8,9]) and finite impulse response (FIR) (see
e.g., [8, 10]) models. The IIR model offers the possi-
bility of a more compact representation, however with
the downside of possible difficulties estimating the fil-
ter parameters [11], and potential issues with insta-
bility [12]. The FIR model is simple and straightfor-
ward, but with the disadvantage that comparatively
many coefficients are needed to accurately represent
the RIR [11]. For example, for an office-sized room, the
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FIR model can be several thousands of taps long [2].
A concert hall, on the other hand, can have a rever-
beration time of a couple of seconds [13], which at a
sampling rate of 48 kHz yields an RIR with a length
on the order of 105 samples. This can be prohibitive
from both a memory requirement and computational
complexity point for view, when using the RIR for con-
volution [14–16].

In recent years, archaeoacoustics and the cultural
heritage preservation of acoustic scenes has gained
increased interest from the research community, see
e.g., [17] and references therein. However, in order to
faithfully reconstruct the sound field in a room, the
spatial resolution of the grid of measurements needs
to be on the order of 10 cm [18]. Considering that the
RIR depends on both the source and receiver posi-
tion, even for a small room, the number of required
source/receiver configurations for which the RIR has
to be measured and stored will be in the millions, hence
amounting to hundreds of gigabytes of data for the
acoustic representation of a single room, indicating a
significant need for compact representations of RIRs.

The computational challenges posed by long RIRs
are particularly apparent in acoustic signal processing
applications requiring low input-output latency, such
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as virtual video conferencing [19], augmented/mixed
reality [20] and virtual reality [3, 21], sound zone con-
trol [22, 23], network music performance [24], and ar-
tificial reverberation [25]. In this paper, we consider
rendering techniques based on convolution, highlight-
ing the need for fast, low-latency convolution with long
RIRs.

Ever since the works of Cooley and Tukey [26],
and Stockham [27], a popular approach has been to
carry out convolution in the frequency domain. With
the help of the convolution theorem, which states
that (circular) convolution in the (discrete) time do-
main is equivalent to point-wise multiplication in the
(discrete) frequency domain, one is able to signifi-
cantly reduce the computational burden of convolu-
tion in most cases, owing to the computational effi-
ciency of the fast Fourier transform (FFT) algorithm.
Frequency-domain convolution has since been further
improved by methods such as overlap-add (OLA) and
overlap-save (OLS), and partitioned convolution. For
an overview of these methods see e.g., [28,29]. A draw-
back of frequency-domain convolution is, however, that
it is block-based, and therefore inevitably introduces
latency. Further, partitioned frequency-domain filters
are subject to restrictions with regards to assembling
them into networks of filters (in parallel or serial struc-
ture), which is not the case for time-domain filters [30].
Another possible way to attempt to speed up the com-
putations is by perceptual convolution [31]. There, the
convolution is simplified, based on a perceptual cri-
terion. The number of frequency-domain multiplica-
tions, and the memory storage, are reduced by up to
60%, without considerable quality degradation. An-
other path is optimization with respect to processor
architecture, and the use of graphics processing units
(see e.g., [32] and references therein). Yet another ap-
proach is to effectively shorten the RIR by treating
the different parts of the RIR separately. For example,
in [33], convolution is carried out for the first parts of
the RIR, corresponding to the direct component and
early reflections. The late reverberation, however, is
modeled as a velvet noise sequence, yielding a very
sparse FIR filter. Instead of being convolved with the
sparse FIR, the input signal is propagated in the delay
line of the filter, and only the samples coinciding with
a non-zero component of the sparse FIR are added to-
gether to yield the output.

In this paper we consider RIR compression and fast
low-latency time-domain convolution based on three
different methods; truncation, (hard) thresholding,
and low-rank approximation. The exploitation of the
(approximate) low-rank structure of reshaped RIRs is
something we have considered in previous work. The
physical motivation for it, and its applicability to real-
life RIRs, was demonstrated in [34]. How the low-rank

structure can be exploited when estimating RIRs from
noisy input-output relations was shown in [35] and the
simultaneous compression of multiple RIRs was con-
sidered in [36]. Atkins et al. showed in [37] how this
low-rank structure can be exploited in time-domain
convolution, an idea we extended upon in recent work
[38]. Jaderberg et al. showed in [39] how speeding up
convolutional neural networks can be done by leverag-
ing low rank, but the authors consider dimensions no
higher than 3.

The contribution of this paper is threefold. Firstly,
we provide an extensive comparison of the aforemen-
tioned compression methods, with respect to several
objective quality measures, both channel-based and
signal-based. Secondly, we propose an approximate
fast time-domain convolution method based on N -D
low-rank tensor approximation of an RIR. This yields
lower computational complexity than traditional time-
domain convolution, and lower latency than FFT-
based fast convolution. Thirdly, we show how the prob-
lem of compression and fast time-domain convolu-
tion can be handled within the same framework. This
comes with the major advantage that the compressed
RIR does not need to be decompressed before it can
be used for convolution.

This paper is organized as follows: first, Section 1 is
concluded with an introduction of the notation used
throughout the paper, as well as the introduction of
the signal model. In Section 2, the different RIR ap-
proximations considered for RIR compression are in-
troduced. In Section 3, convolution by low-rank ap-
proximation is introduced. Section 4 introduces the
different objective quality measures that will be used
for evaluation. Numerical results are presented in Sec-
tion 5, and finally, conclusions are presented in Section
6.

1.1 Notation And Signal Model
We denote scalars, vectors, matrices, and tensors by
lowercase (e.g., h), bold lowercase (e.g., h), bold up-
percase (e.g., H), and calligraphic letters (e.g., H), re-
spectively. Sets are also denoted by calligraphic let-
ters, but it will be clear from context what is consid-
ered. The selection of one or several elements from a
vector, matrix, or tensor will be denoted by square
brackets, e.g. H[m : n, j] is a vector containing the
mth till the nth element of the jth column of H, and
the hat symbol, ·̂, indicates an approximated quantity.
The symbol ◦ denotes the outer product, i.e., (x1 ◦
x2 ◦ · · · ◦ xD)[j1, j2, . . . , jD] = x1[j1]x2[j2] . . .xD[jD],
(:) denotes vectorization of a matrix or a tensor, and
b·c denotes the flooring operation.

We consider a discrete-time RIR h(k), for k =
0, 1, ..., nh − 1, arranged in a vector h ∈ Rnh , as well



Jälmby et al. Page 3 of 16

as a discrete-time signal x(k), for k = 1, 2, . . . , nx, ar-
ranged in the vector x ∈ Rnx . The convolution of these
vectors yields the discrete-time output

y(k) =

nh−1∑
n=0

h(n)x(k − n), (1)

for k = 1, 2, . . . , ny, with corresponding vector y ∈
Rny , where ny = nh + nx − 1. Generally, through-
out this paper, an element is considered to be 0, if the
index is out of its defined range, equivalent to appro-
priate zero-padding.

2 Room Impulse Response Compression
We will consider three different RIR approximations
for RIR compression, and compare them to a state-of-
the-art compression benchmark.

2.1 Compression by truncation
Firstly, we consider an RIR compressed by truncation,
ĥT, where

ĥT(n) =

{
h(n), n ≤ nT
0, n > nT

(2)

for some nT ∈ N, nT ≤ nh. This method is amenable
to accelerated convolution, as the length of the im-
pulse response is shortened, decreasing the number of
multiply-add instructions per output sample from nh
to nT.

2.2 Compression by thresholding
Secondly, we consider an RIR compressed by thresh-
olding [1], ĥK, defined as

ĥK(n) =

{
h(n), n ∈ Knk

0, n /∈ Knk

(3)

where Knk
is the set of indices of the nk, in absolute

value, largest elements of h. Also this RIR approx-
imation method yields a possibly faster convolution.
As many of the elements of ĥK are zero, these do not
have to be considered in the convolution. For a sparse
impulse response ĥK we can define the convolution be-
tween ĥK ∈ Rnh and x ∈ Rnx as

y(k) =
∑

n∈Knk

ĥK(n)x(k − n). (4)

This reduces the number of multiply-add instructions
per output sample from nh to nk. The argument could

[1]In previous work, [34], we have referred to this as KMax.

be made that the positions of the non-zero compo-
nents need to be stored, and that that is something
that needs to be taken into account as well. However,
whereas the coefficients themselves are floating num-
bers, the positions are integers, taking up significantly
less space. Therefore, the impact of having to store the
positions was ignored when considering the compres-
sion of thresholding.

2.3 Compression by low-rank approximation
Lastly, we consider an RIR compressed by low-rank
approximation, ĥLR. Assuming nh = ns1ns2 , with
ns1 , ns2 ∈ N, the RIR h ∈ Rnh can be reshaped into a
matrix H ∈ Rns1×ns2 ,

H =

 h(1) h(ns1 + 1) . . . h(ns1(ns2 − 1) + 1)
...

...
...

h(ns1) h(2ns1) . . . h(nh)

.
(5)

With the use of the singular value decomposition
(SVD) H = UΣVT and assuming the singular values
in Σ are arranged in non-increasing order, we can then
make a rank-R approximation of H,

Ĥ2D = U[:, 1 : R]Σ[1 : R, 1 : R]V[:, 1 : R]T . (6)

Finally, ĥ2D = Ĥ2D(:). Similarly, assuming nh =∏D
d=1 nsd , nsd ∈ N, the vector h can be reshaped into

a tensor H ∈ Rns1
×ns2

×···×nsD , of arbitrary dimension
D, where nsd denotes the size of the dth dimension and
the rank of a tensor is defined as the smallest number
of rank-1 tensors needed to generate the tensor H as
their sum. In a similar fashion as to the matrix, we
can then make a rank-R approximation ĤLR of H. For
this we will be using a (canonic) polyadic decomposi-
tion (see e.g., [40] and references therein). This is done
using the high-level function cpd of the Matlab tool-
box Tensorlab [41]. Subsequently, ĥLR = ĤLR(:). We

will, in addition to aforementioned ĥ2D, consider low-
rank approximation of 3-D and 5-D tensors, denoted
ĥ3D = Ĥ3D(:) and ĥ5D = Ĥ5D(:), respectively. The
absence of a 4-D tensor approximation is explained in
Section 5. Also the low-rank approximation method al-
lows for fast time-domain convolution, which we have
explored in recent work for up to three dimensions [38].
Here we will extend this idea to tensors of arbitrary di-
mensions. This will be further explained in Section 3.

2.4 Compression benchmark: Opus
The three methods proposed above, truncation, thresh-
olding, and low-rank approximation, will be compared
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to the state-of-the-art Opus interactive speech and au-
dio codec [42,43]. The Opus codes is created from two
core technologies: Skype’s SILK codec [44], based on
Linear Prediction (LP), and Xiph.Org’s CELT codec
[45,46], based on the Modified Discrete Cosine Trans-
form (MDCT). The idea behind this construction is
that LP is considered to code low frequencies more ef-
ficiently, whereas for music and higher speech frequen-
cies, MDCT is superior. The double layers allow Opus
to achieve higher quality for a wide range of audio.
The Opus codec was created for, and has previously
mainly been considered for, speech and music, but it
has recently also gained attention as a possible way to
compress RIRs [47]. In this work, the Opus encoding
was done using Matlab’s audiowrite. It should be noted
that although Opus shrinks the file size of the stored
RIR, the number of coefficients remains the same. The
RIR compressed by Opus, that will be denoted ĥO, is
therefore, to the best of the authors’ knowledge, not
amenable to fast time-domain convolution. In order to
give the reader a feel for the different approximations,
an example RIR, taken from [48], and a selection of
the compressed RIRs obtained with the different com-
pression methods, at a compression rate (see (32)) of
0.8, are displayed in Fig. 1.

3 Convolution By Low-rank
Approximation

Accelerating convolution by exploiting low-rank ap-
proximations was first considered by Atkins et. al in
[37]. The authors there considered a low-rank approx-
imation of a matricization of the RIR, using the SVD.
In recent work, [38], we have extended this idea to a
three-dimensional tensorization of the RIR. We will
here show how this idea can be further extended to
a tensorization of arbitrary dimension. We will first
demonstrate the 2-D case presented in [35], and then
explain the extension to a tensor of arbitrary dimen-
sion.

3.1 Partitioned Truncated SVD Filter
Assuming nh = ns1ns2 , for ns1 , ns2 ∈ N, an output
sample y(k) of the convolution in (1) can be written
as

y(k) =

ns2∑
j=1

x
(j)T

k h(j), (7)

where

h(j) ,
[
h((j − 1)ns1) . . . h(jns1 − 1)

]
∈ Rns1 (8)

and

x
(j)
k ,

[
x(k−(j−1)ns1) . . . x(k−jns1 + 1)

]
∈ Rns1 ,

(9)

for j = 1, 2, . . . , ns2 . Instead of as in (1) writing
y(k) as the inner product of two vectors of length
nh = ns1ns2 , it is in (7) written as the sum of
ns2 inner products of vectors of length ns1 . Fur-
ther, the RIR h can be reshaped into a matrix
H =

[
h(1) . . . h(ns2

)
]
∈ Rns1

×ns2 . For now we are
going to assume that this matrix is rank-1, i.e., it can
be written as the outer product H = s1 ◦ s2, for two
vectors s1 ∈ Rns1 and s2 ∈ Rns2 . Under this assump-
tion, we have that

H =
[
s1s2[1] s1s2[2] . . . s1s2[ns2 ]

]
, (10)

i.e., the jth column of H, corresponding to h(j), is the
vector s1 scaled by s2[j], j = 1, 2, . . . , ns2 . Further, the
following property is readily verified,

x
(j)
k = x

(j+a)
k+ans1

, a ∈ Z. (11)

Because of (10) and (11), only the first inner prod-
uct of the sum in (7) has to be computed per output
sample k, the other inner products of the sum, i.e.,

x
(j)T

k s1 = x
(j−1)T
k−ns1

s1, for j = 2, . . . , ns2 , have already

been computed for a previous time sample, and can
therefore be fetched from memory and multiplied with
the appropriate entry from s2,

y(k) =
(
x
(1)T

k s1

)
s2[1] +

ns2∑
j=2

(
x
(j)T

k s1

)
︸ ︷︷ ︸

Fetch from memory

s2[j].

(12)

This reduces the number of multiplications per sam-
ple to be carried out, from nh = ns1ns2 to ns1 + ns2 .
These ideas can be extended to a matrix H of arbitrary
rank R. Instead of H being just the outer product of
two vectors, it is now a sum of R outer products,

H = S1S
T
2 =

R∑
r=1

S1[:, r]◦S2[:, r] =

R∑
r=1

S1[:, r]S2[:, r]T ,

(13)

for S1 ∈ Rns1×R, and S2 ∈ Rns2×R. Equation (12) can
now be extended to

y(k) =

R∑
r=1

((
x
(1)T

k S1[:, r]
)

S2[1, r]+

ns2∑
j=2

(
x
(j)T

k S1[:, r]
)

︸ ︷︷ ︸
Fetch from memory

S2[j, r]

)
(14)
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Figure 1: Example results of RIR compression methods

where only R inner products have to be computed for
each time sample. Similar to (12), this reduces the
number of multiplications to R(ns1 + ns2).

3.2 Fast Time-domain Convolution by Tensor
Approximation

We are now ready to extend these ideas to a tensor of
arbitrary dimension. Assuming h ∈ Rnh , with nh =∏D
d=1 nsd , for ns1 , ns2 , . . . , nsD ∈ N, let h be reshaped

into a tensor H ∈ Rns1
×ns2

×···×nsD , and assume that
H is of rank R. Then, analogously to (13),

H =

R∑
r=1

S1[:, r] ◦ S2[:, r] ◦ · · · ◦ SD[:, r], (15)

where Sd ∈ Rnsd
×R, d = 1, 2, . . . , D, and in analog to

(10), but with arbitrary dimension and rank, we have
that

H[:, j2, j3, . . . , jD] =

R∑
r=1

S1[:, r]S2[j2, r] . . .SD[jD, r].

(16)

The equality of (11) can be generalized according to

x
(j2,j3,...,jD)
k = x

(j2+a2,j3+a3,...,jD+aD)

k+
∑D

d=2 ad
∏d−1

p=1 nsp

, (17)

where x
(j2,j3,...,jD)
k ∈ Rns1 is a vector containing the

ns1 latest samples of x, in reversed order, starting at

x(k −
∑D
d=2(jd − 1)

∏d−1
p=1 nsp), and a2, a3, . . . , aD ∈

Z. While verifying (17) can seem like a daunting task,
it becomes clearer when considering the indices of the
first entry of the vectors on the left and right hand side
of (17), respectively,

k −
D∑
d=2

(jd − 1)

d−1∏
p=1

nsp =

k +

D∑
d=2

ad

d−1∏
p=1

nsp−
D∑
d=2

(jd + ad − 1)

d−1∏
p=1

nsp . (18)

The pattern from (7) extends to

y(k) =

ns2∑
j2=1

· · ·
nsD∑
jD=1

x
(j2,j3,...,jD)T

k h(j2,j3,...,jD), (19)

where h(j2,j3,...,jD) = H[:, j2, j3, . . . , jD] is a vector con-
taining ns1 consecutive elements of h, starting at

h(
∑D
d=2(jd − 1)

∏d−1
p=1 nsp). Subsequently, the prop-

erty of (14) is generalized to

y(k) =

R∑
r=1

(
x
(1,...,1)T

k S1[:, r]S2[1, r] . . .SD[1, r]+

ns2∑
j2=2

. . .

nsD∑
jD=2

(
x
(j2,...,jD)T

k S1[:, r]
)

︸ ︷︷ ︸
Fetch from memory

S2[j2, r]. . .SD[jD, r]

)

(20)

with a corresponding structure of what has to be com-
puted and what can be fetched from memory. Similarly
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to the previous case, we have a reduction in complex-
ity. Only R inner products of length ns1 have to be
computed for each time index k, reducing the number
of multiplications to R

∑D
d=1 nsd . When naively imple-

mented, the sum in (20) will yield many superfluous
operations, where one of the vectors contains only ze-
ros. To fully exploit the structure of the RIR, and to
maximize efficiency, it is therefore important to keep
track of which operations actually need to be carried
out and keep the number of multiplications with zeros
to a minimum. We here propose an explicit algorithm.

Let H =
∑R
r=1 S1[:, r] ◦ S2[:, r] ◦ · · · ◦ SD[:, r], where

H ∈ Rns1
×ns2

×···×nsD , and Sd ∈ Rnsd
×R, for d =

1, 2, . . . , D. The operator I : Rn → Rn denotes the
reversion of the order of the elements in a vector, i.e.,

I(x) =
[
x(nx) x(nx − 1) . . . x(1)

]T
, and 0n ∈ Rn

is a vector of zeros. The foundation of the algorithm
is that, for each k, we compute the R necessary inner
products, store the resulting values to memory and add
these to y(k) with appropriate scaling by the corre-
sponding elements of H. Next, the remaining non-zero
inner products in the sum of (20) are fetched from
memory, scaled by the corresponding entry of H and
added to y(k). The fast low-latency convolution al-
gorithm by low-rank tensor approximation is summa-
rized in Algorithm 1. A few remarks regarding Algo-
rithm 1, for providing intuition as well as clarity, are
in order:

• New inner products need to be computed and
stored to memory as long as k ≤ ns1 +nx−1, this
is done within the if-statement starting at line 5.

• Within the for-statement starting at line 14 the
old inner products are fetched from memory and
added to the output.

• On line 15, for d = 2, the upper limit of
∏d−1
p=2 nsp

is lower than the lower limit, in which case, by
convention,

∏1
p=2 nsp = 1.

3.3 Complexity
By the authors of [37], it was noted that an output
sample y(k) requires R(ns1 + ns2) multiply-add in-
structions, in the two-dimensional case, compared to
the nh = ns1ns2 multiply-add instructins of conven-
tional FIR filter convolution. The computational com-
plexity for a general, D-dimensional tensorization is
a generalization of the one in [37], and amounts to

R
∑D
d=1 nsd multiply-add instructions, as compared to

nh =
∏D
d=1 nsd multiply-add instructions of conven-

tional FIR filter convolution. Further, as the contribu-
tion to the end result of the entries in the sum of (20)
are independent from each other, it is possible to per-
form these computations in parallel. To provide some
intuition, an example is shown in Fig. 2. Here the com-
plexity of traditional time-domain convolution is, for

Algorithm 1: Fast Low-latency Convolution by
Low-rank Tensor Approximation

1 Input: H =
∑R
r=1 S1[:, r] ◦ S2[:, r] ◦ ... ◦ SD[:, r], x

2 Output: y
3 for k = 1, 2, . . . , ny do
4 for r = 1, 2, . . . , R do
5 if k ≤ ns1 + nx − 1 then
6 ub = max(k − nx + 1, 0);
7 ue = min(k, ns1);
8 xb = max(k − ns1 + 1, 1);
9 xe = min(k, nx);

10 C[mod(k − 1, nh) + 1, r] =[
I(x[xb : xe])

]T
S1[ub : ue, r];

11 y(k)=∏D
d=2 Sd[1, r]C[mod(k−1,nh)+1,r];

12 l = max (b(k − nx)/ns1c+ 1, 2) ;

13 u = min
(
b(k − 1)/ns1c+ 1,

∏D
d=2 nsd

)
;

14 for c = l, l + 1, . . . , u do
15 jd =⌊

mod
(
(c− 1),

∏d
p=2 nsp

)/∏d−1
p=2 nsp

⌋
+1;

d = 2, . . . , D

16 c̃ = k −
∑D
d=2(jd − 1)

∏d−1
p=1 nsp

17 y(k) = y(k) +∏D
d=2 Sd[jd, r]C[mod(c̃− 1, nh), r];

varying values of nh, compared to that of the proposed
algorithm for the case of square 2-D matricization and
3-D tensorizations of rank 4 and 12.

The two-dimensional algorithm from [37] requires a
memory of size R(ns1 +ns2 +nh)+ns1 variables, com-
pared to 2nh for a conventional FIR filter. For the pro-
posed method, it is R(

∑D
d=1 nsd + nh) + ns1 , i.e., also

the memory requirement for the proposed method is a
generalization of the one in [37].

4 Objective Quality Measures
Audio technology can generally be designed to be ei-
ther physically motivated or perceptually motivated.
Physically motivated techniques are typically compu-
tationally intensive, in the attempt to physically ac-
curately represent the sound field. Perceptually moti-
vated systems are in general less computationally de-
manding, as they aim only to be accurate enough for
human perception [16]. The physical accuracy of low-
rank approximations of RIRs was evaluated in [34],
in this work we aim to investigate the perceptual ac-
curacy of compression by low-rank approximation and
the other aforementioned compression methods. In this
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Figure 2: Computational complexity of proposed
convolution

section we describe a variety of parameters regarding
the perception of room acoustics and corresponding
objective measures. These measures can be divided
into two categories, channel-based objective measures
and signal-based objective measures [2]. The channel-
based measures concern only how well the approxima-
tion of the channel, i.e., the compressed RIR, relates
to the measured channel, i.e., the RIR. Signal-based
measures, on the other hand, pertain to how the ap-
proximated channel distorts the signal output, after
the compressed RIR has been convolved with e.g., mu-
sic or speech.

The objective of the different measures considered
here differs slightly. For some of them a high value is
desirable, for others a lower value is better. For most
of them, however, invariance is what is sought after,
i.e. that the value of the measured quantity for a com-
pressed RIR is as close as possible to the measured
quantity for the original RIR. For an easy overview
for the reader, the measures considered in this paper,
their definitions, whether they are channel- or signal-
based, and their objectives, are recapped in Table 1.

4.1 Channel-based Objective Quality Measures
The perhaps most obvious way to measure the quality
of a compressed RIR is by the normalized misalign-
ment, defined as

MdB

(
ĥ
)

= 20 log10

(
‖ĥ− h‖2
‖h‖2

)
. (21)

The problem with this measure is, however, that it is
not necessarily a good indicator of whether the com-
pressed RIR will yield an auditory perception faithful
to the original RIR.

Reverberation time is a well-known objective mea-
sure for room acoustics. This is the time it takes for
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ĥ
)

M
d
B

( ĥ
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Figure 3: Normalized misalignment for
SMARD (top), AIL (middle), and SAL (bottom)

the sound level to drop 60 dB, after a stationary sound
source has been switched off, and is denoted T60. In
practice, this measure is typically estimated as double
the time it takes for the sound level to drop from−5 dB
to −35 dB [13]. Finding the time it takes for the sound
level to drop a certain amount is done via the energy
decay curve which, since the work by Schroeder [52], is
most commonly found using backwards integration. As
we consider discrete-time signals in this paper, the en-
ergy decay curve D(n) is found using backwards sum-
mation,

D(n) =

nh∑
k=n

h2(k) =

nh∑
k=0

h2(k)−
n∑
k=0

h2(k). (22)

Letting n−xdB denote the time sample when the en-
ergy decay curve D(n) has decreased to x dB below
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Table 1: Measures
Measure Definition Channel/Signal Objective
Normalized Misalignment (21) Channel Low
Reverberation Time T60 (23) Channel Invariance
Echo Density (24) Channel Invariance
Early Decay Time (EDT) (26) Channel Invariance
Center Time (27) Channel Invariance
TOA of Direct Component (28) Channel Invariance
Frequency-weighted Log-spectral Signal Distortion (SD) (31) Signal Low
ViSQOLAudio [49–51] Signal High

its starting value, T60 is found as

T60 = 2 (n−35dB − n−5dB) fs, (23)

where fs denotes sampling frequency. Reverberation
can cause degraded speech intelligibility, but it is also
what gives music fullness, by blending the sounds of
different instruments and voices [13]. It further pro-
vides, together with the energy ratio between direct
and reverberant sound and the time of arrival of the
early reflections, information about the size of a space
and the distance to the boundaries [53].

The echo density profile of an RIR is the fraction
of impulse response coefficients which lie outside the
standard deviation of the coefficient amplitudes, for a
particular time window. A simple and robust measure
for echo density was introduced by Abel et. al in [54],

η(n) =
1/erfc

(
1/
√

2
)

2δ + 1

n+δ∑
k=n−δ

w(k)1{|h(k)|>σ}, (24)

where erfc
(
1/
√

2
)

= 0.3173, 2δ + 1 is the window
length in samples, 1{·} is an indicator function, w(k)
is a window function, for which

∑
k w(k) = 1, and

σ =

[
n+δ∑

k=n−δ

w(k)h2(k)

]1/2
. (25)

Throughout this paper we will use a Hanning window
with δ = 550, when fs = 44.1 kHz and δ = 600 when
fs = 48 kHz, corresponding to a window length of 25
ms, as per the discussion in [54]. Further, we will only
consider the part of the echo density profile where the
entire window fits.

In reverberant music or speech, later parts of the re-
verberation tend to be masked by the direct and early
components of the next note or syllable. Therefore,
the alternative measure early decay time (EDT), has
proved to be better correlated with reverberance, a

perceptual attribute of reverberation, than reverber-
ation time, in the aforementioned scenarios [13]. The
EDT is defined as

EDT = 6(n−10dB)fs. (26)

The parameter center time , denoted ts, describes the
balance between early and late energy in the RIR [13],
defined as

ts =

∑nh

k=0 kh
2(k)∑nh

k=0 h
2(k)

, (27)

i.e., the center of gravity of the RIR. Two other mea-
sures that are commonly mentioned in this context are
mode density [55, 56] and reflections density [16, 57].
These are, however, better suited to characterize syn-
thetically generated RIRs. As we here consider only
real-life RIRs, these measures will not be considered
in this paper.

The time of arrival (TOA) of the direct component,
defined as

TOA =

(
arg max

n
|h(n)|

)/
fs, (28)

is crucial in tasks such as room geometry estima-
tion [58] and acoustic source localization [59]. How the
TOA of the direct component is preserved by a com-
pression method is not well captured by the normal-
ized misalignment and will therefore be considered as
a separate measure in Section 5.

For all the channel-based measures introduced above,
expect normalized misalignment, we aim for a minimal
deviation between the compressed and original RIR
measure. We will therefore, in Section 5, present the
root-mean-square error (RMSE) for these quantities,

RMSEg

(
ĥ
)

=

√√√√nRIR∑
j=1

∣∣∣g (hj)− g(ĥj)
∣∣∣2/nRIR, (29)
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Figure 4: RMSE for T60 for SMARD (top),
AIL (middle), and SAL (bottom)

where g is the considered measure, and nRIR denotes

the number of RIRs used in the evaluation. We alert

the reader that we in Section 5 will consider RMSE

in linear scale for certain measures and in logarith-

mic scale for other measures, depending on what best

highlights the difference in performance between the

considered compression methods. All considered quan-

tities except echo density are scalar, making the com-

putation of the RMSE straightforward. Echo density,

however, is a discrete-time sequence. There the RMSE

will be computed as

RMSEED

(
ĥ
)

=

√√√√nRIR∑
j=1

‖hjED− ĥjED‖22

/
nRIRnED,

(30)
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Figure 5: Histogram of differences in T60
estimate, T60(ĥ3D)− T60(h), for 3-D tensor
approximation and recorded RIR.

where hjED =
[
η(1), η(2), . . . , η(nED)

]T
denotes

the echo density profile of the jth RIR, and nED the
length of the echo density profile.

4.2 Signal-based Objective Measures
Next, we present measures of output signal degrada-
tion. The ultimate goal of any acoustic signal enhance-
ment or reproduction task is to achieve good signal
quality. One way to measure this is by using subjec-
tive listening test. These tests are, however, expensive,
tedious, and time consuming [47,60]. Therefore, several
objective measures have been developed to predict the
outcome of subjective listening tests. The frequency-
weighted log-spectral signal distortion (SD) [61] is a
perceptually weighted objective measure of distortion
of a sound signal, w.r.t. a reference signal

SD(t) =

√∫ fu

fl

wERB(f)

(
10 log10

Pŷ(f, t)

Py(f, t)

)2

df, (31)

where Pŷ and Py are the short-term power spectra

of ŷ = x ∗ ĥ and y = x ∗ h, for a sound signal x,
respectively, and wERB is a frequency-weighting func-
tion, that gives equal weight to each auditory critical
band between fl = 3000 Hz and fu = 6500 Hz. In Sec-
tion 5, we will present both the mean and maximum
SD values for the respective scenarios.

Hines et. al introduced the Virtual Speech Qual-
ity Objective Listener (ViSQOL) [49,50], an objective
measure for predicting the subjective assessment of
perceived speech quality, based on the Neurogram Sim-
ilarity Index Measure (NSIM) [62]. ViSQOL was sub-
sequently extended to ViSQOLAudio [51], to comprise
not only speech, but also audio and music signals, and
has shown high correlation with the subjective listen-
ing test MUSHRA [63]. Narbutt et al. have extended
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Figure 6: RMSE for echo density for SMARD (top),
AIL (middle), and SAL (bottom)

ViSQOL and ViSQOLAudio to AMBIQUAL [64, 65],
that aims to predict not only listening quality, but also
localization accuracy, for spatial audio. We don’t con-
sider spatial audio in this work, and will therefore not
use AMBIQUAL. In addition to the aforementioned
acoustic qualities and measures, there are several other
measures concerning perceived speech quality, such as
PESQ [66] and POLQA [67]. These are intended to
predict the perceived quality of speech, rather than
audio or music, and will not be considered here.

5 Numerical Results
To compare the performance of the here investigated

methods, we apply them to three different datasets of
RIRs, with varying reverberation time. First we ap-
ply it to the single- and multichannel audio recordings
database (SMARD) [48], which contains RIRs from a
listening room with a reverberation time of approxi-
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ĥ
)

R
M

S
E
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Figure 7: RMSE for EDT for SMARD (top),
AIL (middle), and SAL (bottom)

mately 0.15 s, sampled at 48 kHz. Next, we apply the
methods to the two different datasets from the MYR-
iAD database [68]. The first one is from the Alamire
Interactive Laboratory (AIL), which has a reverber-
ation time of 0.5 s, and the second one is from the
SONORA Audio Laboratory (SAL), with a reverber-
ation time of 2.1 s. These are sampled at 44.1 kHz.

For the low-rank methods, the matricization or ten-
sorization of the RIRs brings about the question
of the size of the dimensions. For a D-dimensional
tensorization, it is required that

∏D
d=1 nsd = nh,

but this can be achieved in several different ways.
The impact of the size of the dimensions is beyond
the scope of this paper, and we will here present
only square matricizations and tensorizations, i.e.,
ns1 = ns2 = · · · = nsD . As a consequence of this, we
must have that nsd = D

√
nh ∈ N. For this reason, the

length of the RIRs for the different compression meth-
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ĥ
)

R
M

S
E

0.70.750.80.850.90.95

0

0.5

1

1.5

·10−3

C
(
ĥ
)

R
M

S
E

Figure 8: RMSE for TOA of direct component for
SMARD (top), AIL (middle), and SAL (bottom)

ods will vary slightly. We will here present the results
for low-rank approximations of different dimensions,
thresholding, truncation, and, as a benchmark, Opus.
In order to be able to have RIR lengths in as close prox-
imity as possible, we present low-rank approximations
for D = 2, 3, and 5, neglecting D = 4, as the length
of the RIR for that dimension of tensorization would
differ too much from the others. The RIR lengths used
for the 2-D, 3-D, and 5-D approximations are denoted
nh2

, nh3
, and nh5

, respectively. The RIR length used
for thresholding, truncation, and Opus is denoted nh,
and will be equal to the largest of nh2

, nh3
, and nh5

,
for the respective scenarios. The different RIR lengths
used in the simulations are found in Table 2. We alert
the reader that these lengths apply to both the approx-
imation and their respective reference RIR, as some of
the objective measures introduced in Section 4 require
that the approximated RIR and the reference RIR are
of equal length. For the generation of the output sig-
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Figure 9: RMSE for center time for
SMARD (top), AIL (middle), and SAL (bottom)

nals, the compressed RIRs are convolved with 5 dif-
ferent, randomly selected, 15 s snippets of music from
EBU-SQAM [69]. When convolving these snippets of
music with the RIRs from SMARD, the music was up-
sampled to 48 kHz using Matlab’s resample, in order
to have matching sampling frequencies.

We denote by Υ(ĥ) the number of coefficients needed

to be stored for a certain compressed RIR ĥ, and re-
mind the reader that for the low-rank approximations,
Υ(ĥ) = R

∑D
d=1 nsd . For all the compression meth-

ods except Opus, the number of coefficients stored co-
incides with the number of multiply-add instructions
needed to carry out time-domain convolution with the
approximated RIR. For the original RIR, this number
is nh. Therefore, by

C(ĥ) = 1− Υ(ĥ)

nh
, (32)
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Table 2: RIR lengths used for the different data sets
Name nRIR nh2 nh3 nh5

SMARD 100 882 = 7744 203 = 8000 65 = 7776
AIL 40 1812 = 32761 323 = 32768 85 = 32768
SAL 20 3162 = 99856 473 = 103823 105 = 100000

where C(ĥ) ∈ [0, 1), we denote both compression

rate and complexity reduction. For C(ĥ) = 0 there is
no compression or complexity reduction, whereas for
C(ĥ) closer to 1, the degree of complexity reduction
is larger. We provide simulations in the range from
C(ĥ) = 0.7 to C(ĥ) = 0.95, as these are the mini-
mum and maximum values of compression supported
by Opus, for all the sets of RIRs considered here, when
using Matlab’s built-in function audiowrite.

RIRs should ideally be estimated from noiseless mea-
surements, but this condition is often not met in prac-
tice [70–72]. As the RIRs used in this paper are taken
from databases of real-life recorded RIRs, they will
contain some measurement noise. However, to simu-
late a realistic environment, white Gaussian noise was
added to each recorded and truncated RIR before com-
pression and convolution. The power of the noise was
adjusted to yield a signal-to-noise ratio (SNR) of 20
dB, where

SNRdB = 10 log10

(
PR
PN

)
, (33)

where PR and PN denote the power of the RIR without
the noise, and the power of the noise, respectively. The
ground-truth values of the quantities considered in this
section is computed with respect to truncated RIR,
before the noise is added.

On a couple of occasions, the performance of one, or
several, compression methods was significantly worse
than the other methods. In those cases, these approx-
imations have been left out of the figures, as including
them would significantly impact the scaling of the fig-
ure, and prevent the reader from noticing the differ-
ences between the more competitive methods. When
this has been done, remarks have been made in the
corresponding subsection to alert the reader.

5.1 Normalized Misalignment
As can be seen in Fig. 3, in terms of normalized mis-
alignment for the RIR compression, truncation and 2-
D matricization falls short. However, 3-D tensoriza-
tion, 5-D tensorization, and thresholding are all out-
performing Opus.

5.2 Reverberation Time T60
Compression based on low-rank approximation or
thresholding also performs very well when it comes to

the preservation of the reverberation time T60. This is
displayed in Fig. 4, where we observe a consistent out-
performance of Opus. The unexpected performance de-
terioration for the low-rank approximation and thresh-
olding is due to the added noise. Overestimation of T60
for noisy RIRs is a well-known phenomenon [73, 74].
This is due to a slower drop-off of the decay curve
(22). The approximations serve as denoising but for
lower values of compression there is still a systematic
overestimation of the reverberation time. This is il-
lustrated in Fig. 5, where histogram of the differences
between the T60 estimates for the 3-D tensor approxi-
mation and that of the measured RIR, for the RIRs of
SMARD, at the compression rate of 0.7, is displayed.
We alert the reader that these are differences and not
absolute differences, i.e. the fact that all numbers are
positive shows the consistent overestimation. Prelim-
inary simulations showed that this systematic overes-
timation could partly be alleviated by estimating the
T60 a shorter time interval, i.e., corresponding to the
decay from −5 dB to −25 dB, but not entirely.

5.3 Echo Density
When it comes to preserving echo density, displayed in
Fig. 6, Opus is the best of the compared compression
methods for longer RIRs. For short RIRs, 2-D matrix
approximation and 3-D tensor approximation outper-
forms Opus, but 5-D tensor approximation does not.
Truncation and thresholding are not included in Fig.
6 due to poor performance.

5.4 Early Decay Time
The performance of the different compression methods
with respect to preserving EDT is shown in Fig. 7. For
this measure, truncation and 2-D matricization per-
forms worst for all considered cases. Opus works better
for longer RIRs and for higher compression rates, but
for shorter RIRs, and all but the highest compression
rates, thresholding, and 3-D and 5-D tensorization are
better options.

5.5 TOA of Direct Component
For the preservation of the TOA of the direct compo-
nent, there is a clear discrepancy between the compres-
sion methods based on low-rank approximation and
the other methods. This is evident from Fig. 8, where
the results are displayed.
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Figure 10: Mean signal distortion for
SMARD (top), AIL (middle), and SAL (bottom)

5.6 Center Time
In Fig. 9 we see the RMSE for the center time. There
it can be observed that the 2-D matrix approximation
does not perform on the level of Opus, but threshold-
ing, and the higher-order tensor approximations do,
for all but the highest compression rates. The perfor-
mance of compression by truncation has been left out
of the figure.

5.7 Signal Distortion
The results for the mean SD are better for the higher-
order low-rank methods and thresholding, compared
to Opus, except for the highest compression rates for
the longest RIRs. This can be seen in Fig. 10. The
results for 2-D matricization and truncation was yet
again worse and left out of the plot to better show the
difference between the other compression methods.

As for the maximum SD, displayed in Fig. 11, trun-
cation had to be left out of the plots and for the AIL
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ĥ2D ĥ3D ĥ5D
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Figure 11: Maximum signal distortion for
SMARD (top), AIL (middle), and SAL (bottom)

dataset, thresholding had to be left out too, due to
their poor performance for higher compression rates.
The higher-order low-rank approximation perform bet-
ter than Opus for all the considered values of the com-
pression rate.

5.8 ViSQOLAudio
In Fig. 12 the ViSQOLAudio scores for varying com-
pression rate are displayed. It is only for high compres-
sion rates of very long RIRs where Opus is a better
option than 3-D tensorization, 5-D tensorization, and
thresholding. For ViSQOLAudio, the results for 2-D
matricization and truncation were left out of Fig. 12
due to poor performance.

6 Conclusions
In this work we have considered different RIR ap-
proximation methods for the purpose of RIR compres-
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Figure 12: ViSQOLAudio for SMARD (top),
AIL (middle), and SAL (bottom)

sion, aiming to save data storage and accelerate time-
domain convolution. It was found that RIR truncation
performs worst in almost all scenarios considered and
can therefore not be recommended. With the exception
of echo density, the RIR compression by thresholding
generally preserves well the RIR qualities considered
here, compared to the state-of-the-art Opus. For the
low-rank approximation methods, 2-D matricization
falls short on certain measures, such as mean signal
distortion, and ViSQOLAudio. The 3-D and 5-D ten-
sor approximations generally outperforms threshold-
ing and they are more robust, as there was no consid-
ered scenario or measure where they preformed signifi-
cantly worse than the other methods, and they perform
better than thresholding with respect to the signal-
based measures. Much like thresholding, 3-D and 5-D
tensor approximations can’t compete with Opus when
it comes to preserving echo density, and for the highest

level of compression rate, Opus is also better when it
comes to preserving EDT and center time. For all other
considered measures and scenarios, 3-D and 5-D tensor
approximations are as good, or better, than Opus. Add
to this the fact that the low-rank tensor approxima-
tions are amenable to fast time-domain convolution,
and they stand out as the superior choice compared to
Opus.

Future research should mainly focus on three open
questions. Firstly, investigating whether the promis-
ing results for the objective measures considered here
will translate into superior performance also in sub-
jective listening tests. Secondly, the fact that the low-
rank approximations preserve the TOA of the direct
component almost flawlessly indicates that these ap-
proximations could be very useful also in the context
of spatial RIRs, which needs to be further explored.
Finally, the occasional discrepancy in performance be-
tween the 3-D and 5-D tensorization methods is not
yet well enough understood, and needs to be further
investigated.
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