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ABSTRACT The room impulse response (RIR) describes the response of a room to an acoustic excitation
signal and models the acoustic channel between a point source and receiver. RIRs are used in a wide
range of applications, e.g., virtual reality. In such an application, the availability of closely spaced RIRs
and the capability to achieve low latency are imperative to provide an immersive experience. However,
representing a complete acoustic environment using a fine grid of RIRs is prohibitive from a storage point
of view and without exploiting spatial proximity, acoustic rendering becomes computationally expensive.
We therefore propose two methods for the joint compression of multiple RIRs, Low-rank Compression
of Room Impulse Responses for Low-latency Convolution and Low-rank Compression of Room Impulse
Responses for Low-latency Convolution with Partially Invariant Transformation, based on the generalized
low-rank approximation of matrices (GLRAM), for the purpose of efficiently storing RIRs and allowing
for low-latency convolution, for which we propose an algorithm. We show how one of the components of
the GLRAM decomposition is virtually invariant to the change of position of the source throughout the
room and how this can be exploited in the modeling and convolution. In simulations we show how this
offers high compression, with less quality degradation than for comparable benchmark methods.

INDEX TERMS Convolution, low-rank modeling, room impulse responses

I. INTRODUCTION

THE room impulse response (RIR) describes the impact
of a room on an acoustic excitation signal played within

the room and is used in a wide variety of applications [1]–
[3]. Typically, the RIR is modeled either as a infinite impulse
response (IIR) (see, e.g., [4], [5]), or as an finite impulse
response (FIR) model (see, e.g., [4], [6]). The IIR model
is generally more compact, but the filter parameters and be
difficult to estimate, due to issues of instability [7], [8]. The
FIR model is simple and straightforward, but the number of
parameters needed is large, on the order of 103 for an office-
sized room, and 104 or even 105 for a reverberant room
such as concert hall, at a sampling rate of 48 kHz [9], [10].
This can be prohibitive from both a memory requirement

and computational complexity point for view, when using
the RIR for convolution [11]–[13]. The RIR is position-
dependent, meaning that if the source or the receiver moves,
the corresponding RIR changes. As a consequence, in order
to faithfully reconstruct the sound field in a room, the spatial
resolution of the grid of measurements needs to be on the
order of 10 cm [14]. Even for small rooms, the number of
source/receiver configurations for which the RIR has to be
stored will be in the millions, amounting to hundreds of
gigabytes of data for a single room. Consequently, there is
a need for compact representations of the RIRs of a room.

An application of RIRs, with a market that has seen a
surge in recent years, and is expected to continue to grow, is
that of simulated experiences, such as virtual reality (VR),
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with purposes ranging from pure entertainment to decision
making in building design, skill training, and therapy in
mental health [15]–[18]. In VR it is desirable to allow the
user to move around in the simulated space, thereby allowing
for a more immersive experience. It is necessary to have
closely spaced RIRs to be able to represent small sound
sources in order for the experience to be immersive [16]. The
storage of said RIRs can, however, be burdensome, due to
the limited storage of real-world products [19]. Furthermore,
the processing needs to be as light as possible, as most of
the computational resources are used for the visual rendering
[16]. This highlights the need for compact storage of, and
fast low-latency convolution with, RIRs.

In order to provide alleviation in terms of storage and
processing, we have in previous work considered low-rank
models of matricizations and tensorizations of RIR vectors
[20], how RIRs can be estimated on a low-rank form [21],
how this low-rank structure can be leveraged in fast, low-
latency time-domain convolution [22], how low-rank models
preserve objective RIR qualities and perform with respect
to objective signal-based measures [23], and for multi-
channel active noise control [24]. In this paper we extend
upon these ideas and propose the joint compression of
multiple RIRs, for the purpose of saving storage space, as
well as making them amenable to fast low-latency multi-
channel convolution. This compression will be done using
two different methods building upon the generalized low-
rank approximation of matrices (GLRAM), introduced in
[25]. We propose that the set of RIRs used to find the
components of GLRAM does not need to be the same as the
set of RIRs one aims to compress. This allows for scenarios
where the compression is learnt on one set of RIRs and
then later used on another set of RIRs, possibly unknown at
the time when the compression was learnt. Huang et al. has
in [26] considered system identification from input-output
data, of RIRs corresponding to adjacent source positions, on
the form of a tensor decomposition.

The contribution of this paper is fourfold. Firstly, we show
how multiple RIRs of a room can be compressed jointly,
with less quality degradation than comparable state-of-the-
art methods, using joint low-rank representations. Secondly,
we show how the components of this compression vary
throughout the room, and how this insight can be leveraged
in the modeling. Thirdly, we demonstrate how the compres-
sion can be learnt using a set of RIRs, and then used to
compress a different set of RIRs. Finally, we propose an
algorithm for multi-channel low-rank convolution with the
jointly compressed RIRs, without the need to decompress
these.

This paper is organized as follows: In Section II the
signal model and the proposed algorithms are presented.
Numerical results are presented in Section III. Finally, in
Section IV, conclusions are presented and possible areas for
future research are pointed out.

A. NOTATION
We denote scalars, vectors, and matrices, by lowercase (e.g.,
h), bold lowercase (e.g., h), and bold uppercase letters (e.g.,
H), respectively. Sets are denoted by calligraphic letters
(e.g., H), and the cardinality of a set is denoted |H|. Linear
operators are also denoted by uppercase calligraphic letters,
but it will be obvious from context what is considered.
In is an n × n identity matrix. The selection of one or
several elements from a vector or matrix will be denoted by
square brackets, e.g., H[m : p : n, j] is a vector containing
every pth element from the mth till the nth row of the jth
column of H (the omission of p indicates that every element
between m and n is considered). The hat symbol, ·̂, indicates
an approximated quantity. The operator I : Rn → Rn
denotes the reversion of the order of the elements in a
vector, i.e. I(x) =

[
x(nx), x(nx − 1), . . . , x(1)

]T
.

Finally, eigenvalues and singular values are ordered in a non-
increasing fashion, with respect to the magnitude.

II. SIGNAL MODEL, ALGORITHM, AND MOTIVATION
A. SIGNAL MODEL
We consider a discrete-time RIR h(k), k = 1, 2, . . . , nh,
arranged in the vector h ∈ Rnh . The RIR can be modeled
as a sum of decaying sinusoids (see [20] and references
therein),

h(rr, rs, k) =

ms∑
m=1

µm(rr, rs)e
−βmn cos(ωmn+ φm), (1)

for k = 1, 2, . . . nh. Here, µm denotes the initial amplitude,
rr, rs ∈ R3 the position of the receiver and the source,
respectively, βm ∈ R+ the exponential decay constant,
ωm ∈ [0, π] the angular frequency, φm ∈ [0, 2π) the
phase and ms ∈ N is the number of decaying sinusoids
used in the model. For the ease of notation, we will drop
the dependence on rr and rs and refer to h(rr, rs, k) as
h(k). Consider the matricization, or reshaping, of h =[
h(1) h(2) . . . h(nh)

]T
into a matrix H ∈ Rr×c,

H =

h(1) h(r + 1) . . . h(r(c− 1) + 1)
...

...
...

h(r) h(2r) . . . h(cr)

 ,
(2)

where it is assumed that nh = rc. When a vector con-
sisting of the sum of ms discrete-time decaying sinusoids
is reshaped into a matrix, that matrix will have rank 2ms

(see, e.g., [27]). The low-rank structure of the matricized
RIR is something that can be exploited for purpose of
compact storage [20], as well as fast, low-latency time-
domain convolution [22]. We have in previous work focused
on the low-rank structure of single RIRs. Here we look
also to exploit the similarity of RIRs from closely spaced
source or receiver positions, by considering joint low-rank
approximation of multiple matricized RIRs. We will see
that the original GLRAM decomposition is too restrictive
for the purpose of joint compression of RIRs when they

2 VOLUME ,



<Society logo(s) and publication title will appear here.>

correspond to source or receiver positions too far apart.
However, by considering a modified form, good compression
can be achieved and the approximated RIRs are amenable to
fast low-latency time-domain convolution.

B. GLRAM
Consider a set of RIRs, which with (2) can be represented
as a set of matrices Hj ∈ Rr×c, j = 1, 2, . . . , n. GLRAM
constructs joint low-rank approximations Hj ≈ Ĥj =
LDjR

T , j = 1, 2, . . . , n, by minimizing the criterion

minimize
L,R,Dj

n∑
j=1

‖Hj − LDjR
T ‖2F ,

s.t. LTL = I`1 ,R
TR = I`2

(3)

where L ∈ Rr×`1 , R ∈ Rc×`2 , Dj ∈ R`1×`2 . First L and R
are found iteratively, and then the matrices Dj are found via
Dj = LTHjR. The matrices L and R are common to all
Ĥj , j = 1, 2, . . . , n. While L and R are orthogonal, much
like U and V of a traditional singular value decomposition
(SVD), H = USVT , Dj is not necessarily, in contrast
to S, diagonal. It is also worth noting that `1 and `2 do
not have to be equal, yielding extended modeling freedom.
By considering `1 < r, `2 < c, and a large number of
RIRs, n, the number of coefficients needed to represent
the approximated matrices Ĥj , can be made significantly
smaller than the number of coefficients needed to represent
the original matrices Hj . The original GLRAM algorithm
can be found in [25].

C. PROPOSED ROOM COMPRESSION METHODS
We propose two distinct methods for the simultaneous com-
pression of multi-channel RIRs, which will be introduced
in this section. We will from hereon distinguish between
the set of RIRs used for finding L and R, denoted HModel,
and the set of RIRs to be compressed, denoted HComp. We
will denote the cardinalities of these sets nModel = |HModel|
and nComp = |HComp|, respectively. To reflect the distinction
between finding L and R, summarized in Algorithm 1, and
finding the matrices Dj for all the RIRs of HComp, summa-
rized in Algorithm 2, we will divide the original algorithm
from [25], into two distinct algorithms. For Algorithm 1, we
will initialize L as suggested in [25], by using

L(0) =

[
I`1
0

]
(4)

where 0 is a matrix of all zeroes, of appropriate size. As
indicated in [25], the algorithm generally converges in very
few iterations. We will therefore not consider a stopping
criterion, but rather a maximum number of iterations, I = 3.
It should be noted that when considering only one matrix,
i.e. nModel = 1 and by letting `1 = `2 = R, GLRAM
is equivalent to an R-truncated SVD. The first proposed
method, Low-rank Compression of Room Impulse Responses
for Low-latency Convolution (LoCo-LoCo), consists of run-
ning Algorithm 1 and then Algorithm 2.

Algorithm 1 Finding L and R

1: Input: {Hj}j∈HModel
, L(0), I

2: Output: L, R
3: for i = 1, 2, . . . , I do
4: MR =

∑
j∈HModel

HT
j L

(i−1)L(i−1)THj

5: Compute `2 first eigenvectors
{
φRk

}`2
k=1

of MR

6: R(i) ←
[
φR1 , . . . ,φ

R
`2

]
7: ML =

∑
j∈HModel

HjR
(i)R(i)THT

j

8: Compute `1 first eigenvectors
{
φLk

}`1
k=1

of ML

9: L(i) ←
[
φL1 , . . . ,φ

L
`1

]
10: end for
11: L← L(i)

12: R← R(i)

Algorithm 2 Finding Dj

1: Input: {Hj}j∈HComp
, L, R

2: Output: {Dj}nComp
j=1

3: for j = 1, . . . , nComp do
4: Dj ← LTHjR
5: end for

Next, the difference in spatial variability between the
matrices U and V of an SVD of an RIR matrix H, and
by extension, the matrices L and R of the GLRAM, will be
discussed. In preliminary simulations it was observed that
for two separate SVDs of matricized RIRs corresponding
to closely spaced receiver positions, the V matrices for the
respective SVDs were much more similar than the respective
U matrices. An example of this is displayed in Figure
1. There it can be seen that for three matricized RIRs,
corresponding to closely spaced receiver positions, taken
from [28], the columns of U (left) appear to change much
more from one RIR to another, as compared to the columns
of V (right). In Figure 1 we display the first (top) and second
(bottom) columns of U and V.

The merit of this will be further discussed in Section III-
B. For now, it motives the proposal of the second method,
Low-rank Compression of Room Impulse Responses for Low-
latency Convolution with Partially Invariant Transformation
(LoCo-LoCo-PIñaTa). This method consists of first finding
the matrix R (common to all the compressed RIRs) by
running Algorithm 1 (but ignoring L), and then finding

Wj = LjDj = LjL
T
j HjR, (5)

Wj ∈ Rr×`2 , by running Algorithm 3.

VOLUME , 3



Author et al.:

Algorithm 3 Finding Wj

1: Input: {Hj}j∈HComp
, R

2: Output: {Wj}j∈HComp

3: for j = 1, 2, . . . , nComp do
4: ML = HjRRTHT

j

5: Compute `1 first eigenvectors
{
φLk

}`1
k=1

of ML

6: Lj ←
[
φL1 , . . . ,φ

L
`1

]
7: Wj = LjL

T
j HjR

8: end for

D. COMPUTATIONAL COMPLEXITY AND COMPRESSION
The computationally most expensive steps of the GLRAM
algorithm are the formation of the matrices MR and ML,
of O (`1c(r + c)nModel) and O (`2r(r + c)nModel), respec-
tively [25], where O(·) refers to the limiting number of
multiplications. For GLRAM, and the algorithms considered
here, the eigenvalue decomposition of MR and ML, are
also expensive, bounded at O(c3) and O(r3), respectively
[29]. For Algorithms 1 and 3, the most expensive step
therefore depends on the values of c, r, nModel, and nComp.
For Algorithm 2, the creation of Dj j = 1, 2, . . . , nComp is
of order O (nCompr`2(c+ `1)) [25].

With compression rate, we refer to the reduction in com-
putational storage. For a single RIR, this is defined as

C(ĥ) = 1− Υ(ĥ)

nh
, (6)

where nh is the number of coefficients of the recorded and
truncated RIR and Υ(ĥ) is the number of coefficients for the
compressed RIR. A compression rate close to zero means
nearly no compression, whereas a compression rate closer
to one means a high degree of compression. The benefit of
GLRAM is that it allows us to consider L and/or R for the
compression of multiple matricized RIRs simultaneously. In
light of this, and denoting the number of L matrices by nL,
the number of R matrices by nR, and we instead consider
the compression rate for a set of nComp RIRs as

C(ĥ) = 1−
nLr`1 + nComp`1`2 + nRc`2

nhnComp
. (7)

When considering the scenario where R is common to all
the RIRs of the room, but each RIR has its own Wj , the
expression for the compression rate is reduced to

C(ĥ) = 1−
nCompr`2 + c`2

nhnComp
. (8)

E. FAST LOW-LATENCY CONVOLUTION
How low-rank structure to the reshaped RIR can be lever-
aged for fast, low-latency convolution has been explored in
previous work [22], [30]. Here we consider an input signal
x ∈ Rnx and an output signal y = h ∗ x, y ∈ Rny ,
where ny = nh + nx − 1. In the simplest case, where
the RIR h is reshaped into a rank-1 matrix H, the filtering
operation with a very long filter (i.e., the RIR) is replaced

by two filtering operations with significantly shorter filters,
corresponding to the columns of Wj and R. This unveils
another benefit of a matrix R common to all the RIRs.
The convolution between an audio signal and R needs to
be done only once and the result can then be reused for
all the considered RIRs. The extension to arbitrary rank
of the matrix H is straightforward as a rank-R matrix is
the sum of R rank-1 matrices. The filtering of the signal
through the entire RIR can be replaced by the filtering
through 2R shorter filters. The approach is summarized in
Algorithm 4.1 For Algorithm 4, we consider complexity in
terms of number of multiply-add instructions. The creation
of P requires (nx + (c − 1)r)`2(bnx

r c + 1) multiply-add
instructions and the creation of {yj}nComp

j=1 requires in total
nCompny`2r multiply-add instructions. For most relevant sce-
narios (nx+(c−1)r)`2(bnx

r c+1)� nCompny`2r. Traditional
time-domain multi-channel convolution, assuming nh ≥ nx,
requires in total nCompnynh multiply-add instructions, hence
the proposed approach yields a reduction of the compu-
tational cost by a factor of ≈ c

`2
. A similar algorithm,

exploiting both similar L and R, could be envisaged, but as
will be shown in Section III, LoCo-LoCo-PIñaTa is better
suited for the purpose of compressing the RIRs of an entire
room for low-latency convolution. For the sake of brevity,
such an algorithm will therefore not be considered.

Algorithm 4 Multi-channel Low-rank Convolution
1: Input: {Wj}j∈HComp

, R, x
2: Output: {yj}nComp

j=1

3: for j = 1, . . . , nx + (c− 1)r do
4: for ` = 1, . . . , `2 do
5: RLow = max

(
d j−nx

r e+ 1, 1
)

6: RHigh = min
(
d jr e, c

)
7: xLow = max (mod(j − 1, r) + 1, j − (c− 1)r)
8: xHigh = min (nx − r + 1 + mod(j − 1− nx, r), j)
9: P[j, `] = R[RLow : RHigh, `]I (x[xLow : r : xHigh])

10: end for
11: end for
12: for j = 1, . . . , nComp do
13: for k = 1, . . . , ny do
14: PLow = max(k − r + 1, 1)
15: PHigh = min(k, ny − r + 1)
16: WLow = max(k − (ny − r), 1)
17: WHigh = min(k, r)
18: for ` = 1, . . . `2 do
19: p = P[PLow : PHigh, `]
20: w = I (Wj [WLow : WHigh, `])
21: yj [k] = yj [k] + wTp
22: end for
23: end for
24: end for

1A Matlab implementation of Algorithm 4 is available at https://
github.com/m-jalmby/multichannel conv example
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III. NUMERICAL RESULTS
A. COMPACT-ARRAY RIR MEASUREMENTS
In the first example we will be using RIRs from the single-
and multichannel audio recordings database (SMARD) [28].
These are recorded at 48 kHz in a 60 m2 room, with a
reverberation time of approximately 0.15 s. The RIRs will
be truncated at nh = 6400 samples, corresponding to 0.13
seconds. We will consider the RIRs recorded with orthogonal
arrays, which in turn consist of 3 uniform linear arrays
(ULA) with 7 microphones (5 cm spacing) for each, recorded
at 24 different source-receiver position configurations, yield-
ing a total of 504 RIRs. In this scenario HModel = HComp,
i.e., the set of matrices used for finding L and R will be
the same as the set of matrices to be compressed. We will
consider two different versions of LoCo-LoCo and LoCo-
LoCo-PIñaTa, respectively. For the first ones, which we
denote LoCo-LoCo 7 and LoCo-LoCo-PIñaTa 7, we will
consider a different HModel for each ULA of the orthogonal
array, i.e. nModel = 7. For the other ones, LoCo-LoCo 21
and LoCo-LoCo-PIñaTa 21, HModel is the entire orthogonal
array, i.e. nModel = 21. These two versions of LoCo-LoCo
will be compared to two other approaches. Firstly, a low-
rank approximation using a truncated SVD, for each RIR.
The R-truncated SVD of a matrix H is the closest rank-
R matrix to H in both the 2-norm and in the Frobenius
norm [31]. The drawback from a compression point of
view, however, is that for each compressed matricized RIR
Ĥj = Uj [:, 1 : R]Sj [1 : R, 1 : R]Vj [:, 1 : R]T , the three
matrices Uj , Sj , and Vj are unique to each approximated
RIR Ĥj and have to be stored. This means that for a
fixed compression rate, the rank for the truncated-SVD
approximation method will be significantly lower than `1
and `2 for LoCo-LoCo and LoCo-LoCo-PIñaTa. For the R-
truncated SVD, C(ĥ) = 1−R(c+ r)/nh. For LoCo-LoCo,
LoCo-LoCo-PIñaTa, and SVD, the truncated RIR vectors are
reshaped into 80 × 80-matrices. We will also consider the
state-of-the-art Opus interactive speech and audio codec [32],
[33]. The Opus codec is created for the compression of
audio, but has recently been considered for the compression
of RIRs too [34]. The Opus encoding was done using
Matlab’s audiowrite. Although Opus shrinks the file size of
the stored RIR, the number of coefficients remains the same.
The error is measured in terms of normalized misalignment,

MdB

(
ĥ
)

= 20 log10

(
1

nComp

nComp∑
j=1

‖ĥj − hj‖2
‖hj‖2

)
. (9)

The results are shown in Figure 2. There it can be seen
that for the RIRs corresponding to the closely spaced micro-
phones of SMARD, on either the full array or one for each
ULA, LoCo-LoCo performs the best. LoCo-LoCo-PIñaTa,
for which `1 and `2 is much smaller than for LoCo-LoCo,
given a fixed compression rate, fails to perform on par with
the benchmark methods, except for very high compression
rates, where the performance of Opus declines considerably.

B. SPATIAL VARIATION OF U AND V

The difference in how much of the spatial variation is
reflected in U and V, respectively, is highlighted in the
following example. We consideri the same RIRs as in Section
III-A and use an R-truncated SVD with R = 12. For each
ULA of the orthogonal array, separate SVDs are made of
the matricized RIRs, denote these Un and Vn, respectively,
n = 1, 2 . . . , 7. It is then explored what error is induced by
using either U1 or V1, in place of Un and Vn, respectively,
for the low-rank approximation. The averaged results are
found in Figure 3 (top). For reference, using both Un and
Vn resulted in a normalized misalignment of ∼ −18 dB.
As expected, using Un and Vn is by far the best, but the
substantial outperformance by the case where V1 is kept
constant, as compared to when U1 is kept constant, is an
indication that more of the spatial invariance of adjacent
RIRs of is captured by V.

This is also seen when considering the subspace angles
(see, e.g., [35]). For a matrix U ∈ Rm×n, let U = {U[:
, 1],U[:, 2], . . . ,U[:, n]} denote the set of its column vectors,
and U the subspace of Rm that the vectors of U span. For
two matrices, U ∈ Rm×n,V ∈ Rm×p, the principal angles
θ1 ≤ θ2 ≤ · · · ≤ θmin(n,p) ≤ π/2 between the two subspaces
U and V and the corresponding principal directions uk ∈ U
and vk ∈ V are defined recursively as

cos(θk) = uTk vk =

max
u∈U,v∈V

uTv

s.t. ‖u‖ = ‖v‖ = 1

uTui = vTvi = 0, i = 1, . . . , k − 1.

(10)

In Figure 3 (bottom) we see the mean principal angles,
averaged over the three ULA’s of the 24 source-receiver
position configurations, as a function of microphone position.
The large degree of similarity between the subspaces V1 and
Vn, n = 2, 3, . . . , 7, compared to U1 and Un, n = 2, 3, . . . , 7,
is evident. We will now consider how this can be exploited.

C. SYNTHETIC ROOM IMPULSE RESPONSES
We will here consider synthetically generated RIRs, in order
to further investigate the spatial variation captured by L and
R, respectively. This allows for a scenario where the location
of the loudspeaker generating the signal is fixed, and we
consider the RIRs for microphones placed on a finely spaced
grid throughout the room. The RIRs considered in this
section have been generated using the image source method
[36], [37]. The three-dimensional room is 3.7 m × 3.1 m ×
3.2 m, the loudspeaker is placed at

[
2.62, 1.4, 1.6

]
m,

and microphones are placed on a two-dimensional Cartesian
grid with spacing 0.06 m, also at 1.6 m above the floor,
starting 0.2 m from each wall. The frequencies of the
excitation signal, the damping coefficients for the respective
surfaces and frequencies, and the reverberation time, T60,
for the respective frequencies, are stated in Table 1. The
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RIRs are truncated to 0.33 s, corresponding to nh = 15625
samples, given the sampling rate of 48 kHz.

In this scenario we initially considered LoCo-LoCo and
LoCo-LoCo-PIñaTa, and truncated SVDs as a baseline. For
LoCo-LoCo, `1 = `2 = 56, for LoCo-LoCo-PIñaTa, `1 =
`2 = 21, and for truncated SVD, R = 12, all corresponding
to C(ĥ) ≈ 0.8, due to the fact that the number of coefficients
shared by the compressed multi-channel RIRs varies strongly
between the methods. For LoCo-LoCo and LoCo-LoCo-
PIñaTa, the matrices common to all the compressed RIRs
(L and R for LoCo-LoCo and R for LoCo-LoCo-PIñaTa)
were found using a randomly chosen subset, HModel, with
nModel = 25, of the all RIRs to be compressed, HComp, with
nComp = 2576. Preliminary simulations showed poor perfor-
mance by LoCo-LoCo. Despite the comparatively large `1
and `2, the matrices L and R are unable to capture the RIR
variability throughout the room. Therefore, the results for
LoCo-LoCo will not be shown here.

LoCo-LoCo-PIñaTa, on the other hand, is able to make use
of the invariance of R throughout the room, while capturing
the variability in Wj . In order to be able to reliably represent
RIRs from anywhere in the room, it is important to not only
use RIRs that are far away from the source in HModel. If
only RIRs too far from the source are used when modeling
R, the entries of the top row of R will be 0 which, in turn,
will cause the first r taps of ĥ to be 0 as well. If then the
direct component of an RIR in the room is at one of the first
r samples, LoCo-LoCo-PIñaTa will be unable to faithfully
restore the direct component, causing large misalignment.

The difference in normalized misalignment for LoCo-
LoCo-PIñaTa and the SVD approximation is displayed in
Figure 4. The locations at which the RIRs of HModel for
LoCo-LoCo-PIñaTa are sampled are marked in red. In Figure
4 it can be seen that LoCo-LoCo-PIñaTa performs better
than the baseline, with the exception of a very small area
in direct proximity of the source. For reference, the average
normalized misalignment was −19.98 dB for LoCo-LoCo-
PIñaTa and −18.73 dB for the baseline truncated SVD.

D. DISTRIBUTED-ARRAY RIR MEASUREMENTS
The findings from Section III-C are confirmed when applying
the same methods to real data. In this section we consider
RIRs from the dataset S32-M441 from [38]. Here, RIRs are
recorded by microphones in a 1 m × 1 m planar grid, every
0.05 m, from {x, y|−0.5 ≤ x, y ≤ 0.5}, yielding 441 RIRs,
with a source at

[
1 0.45 −0.1

]
, relative to the middle of

the microphone grid. The RIRs are recorded in a room with
approximate dimensions of 7.0 m × 6.4 m × 2.7 m, with
T60 = 0.19 s. We consider nh = 8100, corresponding to 0.17
s, and the RIRs are reshaped into 90 × 90 matrices. Much
like in Section III-C, LoCo-LoCo fell short in preliminary
simulations and will not be considered further. For LoCo-
LoCo-PIñaTa, R was found using 40 randomly chosen RIRs.
The average normalized misalignment is displayed in Figure
5, in the top plot as a function of compression rate and in the

bottom plot as a function of convolution complexity, in terms
of number of multiply-add instructions, when considering
convolution with a signal of length nx = 100. An example
RIR, and the respective approximations, are displayed in
Figure 6, zoomed in at samples 2800 − 4000 in the time
domain and the range 0−6000 Hz in the frequency domain.
LoCo-LoCo-PIñaTa’s superior performance is evident in the
time domain at the samples from 3200 to 3400, as it is able
to capture a longer part of the original RIR. In the frequency
domain, LoCo-LoCo-PIñaTa is able to better represent the
dominant modal peaks.

There is a noticeable difference in improvement for using
LoCo-LoCo-PIñaTa, as opposed to a traditional SVD, for
the scenarios considered in Sections III-C and III-D. This
is likely due to the fact that the synthetic RIRs of Section
III-C display very little modal behavior, as compared to the
recorded RIRs of Section III-D, as the low-rank property of a
matrix such as the one in (2) is dependent on modal behavior,
as described in (1). This is displayed in Figure 7, where
the magnitude response of a measured RIR from [38] (top)
and a synthetic RIR (bottom) are plotted. The magnitude
of the synthetic RIR is dominated by the cavity mode at 0
Hz, whereas the measured RIR from [38] contains several
distinct modal peaks.

E. CHANGES IN SOURCE POSITION
In this section we investigate how the different methods work
for a scenario where the position of the source changes.
The dataset S32-M441 from [38] that we will be using,
contains RIR measurements from 441 different microphones
and 32 different sources, for a total of 441 · 32 = 14112
RIRs. The source position is varied along two separate
rectangles around the microphone grid, one placed 0.1 m
above the microphones, the other placed 0.1 m below the
microphones, each containing 16 source positions. Again we
consider nh = 8100, each truncated RIR is reshaped into a
90 × 90 matrix, and we let `1 = `2 = 16. We consider
the difference in the quality of RIR approximation between
two different versions of LoCo-LoCo-PIñaTa. In the first
one, called Common R, only one matrix R is found for
each rectangle of sources, using 40 randomly selected RIRs
out of the 441 RIRs measured for one of the 16 source
positions. For the second one, called Unique R, a separate
R will be used for each source position, found using the
same 40 randomly selected RIRs as for the first version.
The compression rate is 0.82 in both cases. Averaged over
all RIRs, the normalized misalignment is −23.95 dB for
the Common R version and −23.96 dB for the Unique
R version. The number of multiply-add instructions per
output sample when considering convolution with a signal
of length nx = 100 is 1.44 · 103 in both scenarios. The
main difference is the time spent retrieving R. This needs
to be done only twice for the Common R version, but 32
times for the Unique R version. Simulations were done
using Matlab 2022b on a 2018 MacBook Pro with a 2.7
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GHz QuadCore Intel Core i7 processor. Averaged over 50
Monte Carlo-simulations, the Common R version spent 0.18
s on the retrieval of R whereas Unique R spent 2.87 s. The
results are summarized in Table 2. The minute difference in
misalignment between the two considered versions indicates
that the same matrix R can be used for the compression
of multi-channel RIRs corresponding to multiple source
positions throughout a room.

F. THE RELATIONSHIP BETWEEN `1 AND `2

Up until this point we have considered only the case where
`1 = `2, where we remind the reader that `1 and `2
define the size of Dj ∈ R`1×`2 in the approximated RIR
Ĥj = LDjR

T . One of the advantages of the GLRAM,
as compared to the SVD is that `1 and `2 can be chosen
independently from each other. The previously established
higher degree of similarity of the R matrices, as compared to
the L matrices, for RIRs corresponding to adjacent receiver
positions is an indication that `1 = `2 might not necessarily
be the best choice. To demonstrate this, using the RIRs
from [28] as described in Section III-A, we vary `1 between
5 and 35, while `2 = 40 − `1. The results are shown in
Figure 8. In order to be able to illustrate both normalized
misalignment and compression in the same figure, the y-
axis in Figure 8 is average normalized misalignment per
compression rate. Noticeable in Figure 8 is that the minimum
does not occur at `1 = `2 = 20, but rather at `1 = 25,
`2 = 15. This further strengthens the conclusion that it is
favorable to yield more modeling capacity to L, given that
it absorbs more of the spatial variation. This is beneficial
when considering the multi-channel low-rank convolution
in Algorithm 4. As previously concluded, with a common
R ∈ Rc×`2 , the matrices Lj ∈ Rr×`1 and Dj ∈ R`1×`2 can
be stored together as Wj ∈ Rr×`2 . A smaller `2 decreases
the overall complexity of the convolution.

IV. CONCLUSIONS
In this paper propose two novel methods for the joint
compression of multiple RIRs by use of joint low-rank
approximations. The first proposed method, LoCo-LoCo,
proved better than the benchmark methods, truncated SVD
and state-of-the-art audio compression standard Opus, in
scenarios where the RIRs to be approximated correspond
to very closely spaced receivers. In scenarios where the
receivers are farther apart, the other proposed method, LoCo-
LoCo-PIñaTa, outperformed the benchmark methods, ex-
ploiting the demonstrated spatial invariability in one of the
components of the GLRAM decomposition used throughout
this paper. The compressed multi-channel RIRs yielded by
the proposed methods are amenable to fast low-latency multi-
channel convolution and for multi-channel RIRs compressed
with LoCo-LoCo-PIñaTa we provide an explicit convolution
algorithm.

Previous research has revealed a significant improvement
in performance when considering a 3D tensor approximation
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FIGURE 1. Similarity of SVD for closely spaced RIRs. Columns of U (left)
and V (right). First column (top), second column (bottom).
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FIGURE 3. Spatial variation of U and V (top) and mean of principal
angels between subspaces spanned by the columns of U1 and Un, and
V1 and Vn, respectively

of a single RIR, as opposed to a 2D matrix approximation,
given a fixed compression rate. This gives reason to believe
that tensor approximations could lead to an improvement of
the joint compression of multiple RIRs considered in this
paper and should be the focus of future research.
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FIGURE 4. Difference between normalized misalignment for
LoCo-LoCo-PIñaTa and normalized misalignment for SVD
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FIGURE 6. Example RIR from [38] and compressed RIRs obtained with
LoCo-LoCo-PIñaTa (left) and SVD (right), in the time domain (top) and in
the frequency domain (bottom).

TABLE 1. Damping coefficients and reverberation times, Section III-C

Surface / Hz 125 250 500 1000 2000 4000

Walls 0.1 0.2 0.4 0.6 0.5 0.6

Ceiling 0.02 0.02 0.03 0.03 0.04 0.07

Floor 0.02 0.02 0.03 0.03 0.04 0.07

T60 1.23 0.63 0.33 0.22 0.26 0.21
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FIGURE 7. Example RIR from [38] (top) and synthetic RIR (bottom)
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FIGURE 8. Normalized misalignment per compression rate, for varying `1
and `2.

TABLE 2. Changes in source position

Measure Common R Unique R

C(ĥ) 0.82 0.82

`1 = `2 16 16

MdB(ĥ) −23.95 −23.96
Multiply-add
instructions per 1.44 · 103 1.44 · 103

output sample
Retrieval of R 0.18 s 2.87 s
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