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Abstract In thiswork, we decompose a time series into trend and cycle by introducing
a novel de-trending approach based on a family of semi-parametric artificial neural
networks. Based on this powerful approach, we propose a relevant filter and show
that the proposed trend specification is a global approximation to any arbitrary trend.
Furthermore, we prove formally a famous claim by Kydland and Prescott (1981,
1997) that over long time periods, the average value of the cycles is zero. A simple
procedure for the econometric estimation of the model is developed as a seven-step
algorithm, which relies on standard techniques, where all relevant measures may be
computed routinely. Next, using relevant DGPs, we compare and show by means of
Monte Carlo simulations that our approach is superior to Hodrick–Prescott (HP) and
Baxter and King (BK) regarding the generated distortionary effects and the ability to
operate in various frequencies, including changes in volatility, amplitudes and phase.
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In fact, while keeping the structure of the model relatively simple, our approach is
perfectly capable of addressing the case of stochastic trend, in the sense that the
generated distortionary effects in the near unit root case are minimal and, by all means,
considerably fewer than those generated by HP and BK. Application to EU15 business
cycles clustering is presented and the empirical results are consistent with the rigorous
theoretical framework developed in this work.

Keywords Neural networks · Filtering · Clustering · EU

1 Introduction

Ever, since the seminal work of Burns and Mitchell (1946), the primary objective in a
business cycles framework is to study the fluctuations of a time series around a trend.
Despite the fact that throughout the last decades a number of—often contradicting—
quantitative techniques have been proposed in order to extract the cyclical component
of a time series, what seems to remain elusive in the literature, is an appropriate
universal and global technique to be used in order to assess business cycles.

Probably the most popular approach in the literature regards business cycles as
fluctuations around a trend, the so-called “deviation cycles” (Lucas 1977). In this
context, trend estimation is of outmost importance, because it is necessary for the
extraction of the cyclical component and for the propagation of shocks (Nelson and
Plosser 1982). In fact, the more accurate the trend estimation, the more reliable the
business cycle series extracted. Therefore, reliable trend estimates of a time series
are very crucial because they can assist in addressing relevant issues and constitute,
therefore, a very important task for researchers.

Thus far, for the extraction of the cyclical component of a time series, researchers
assume that the trend specification of the time series follows a certain pattern i.e. lin-
ear, exponential etc. Nevertheless, this is an ad-hoc assumption which totally ignores
the inherent characteristics of the time series at hand i.e. the existence of fat tails, long
memory, etc. To this end, inwhat followswe formally establish a novelmethodological
framework that takes into consideration the inherent non-linearities of the time series.
More specifically, in this work, we decompose a time series into trend and secular
component by introducing a novel de-trending approach based on a family of artificial
neural networks (ANNs). So far, ANNs have found limited applications in Economics.
However, they have very important advantages, such as increased flexibility, excellent
approximation properties, and instead of fitting the data with a pre-specified model,
they let the dataset itself serve as evidence to support the model’s approximation of the
underlying model (Santin et al. 2004). Thus, ANNs are quite flexible and attractive
when the theoretical trend specification is not known a priori (Zhang and Berardi
2001).

In thiswork, insteadoffitting the time series datawith a pre-specified trend equation,
we utilize an ANN specification and let the dataset itself serve as evidence to support
the model’s approximation of the underlying trend. Also, by exploiting the excellent
approximation properties of Neural Networks we prove formally that the proposed
trend specification is a global approximation to any arbitrary trend. So far, a famous
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claim by Hodrick and Prescott (1981, 1997) states that the “conceptual framework is
that over long time periods, their average is near zero”. In this work, we prove formally
(mathematically and statistically) that the produced cyclical component, by means of
our proposed approach, does indeed disappear in the long run, or in other words, its
mean value is equal to zero.

Next, using a number of relevant data generating processes (DGPs) we investigate:
(a) the ability of the proposed neural network filter (NNF) to extract the cyclical com-
ponent of an artificially generated time series that exhibits cycles in a wide range of
frequency domains; (b) the ability of NNF to extract cycles that incorporate changes
in volatility, amplitudes and phase shifts; (c) the distortionary effect of the cycles
produced by NNF with regard to the artificially generated cycles. As a next step, the
results of the aforementioned simulations are compared with Baxter–King (BK) and
Hodrick–Prescott (HP) filters, and the Monte Carlo results suggest that the perfor-
mance of NNF is superior in all cases.

Lastly, our proposed technique is confrontedwith real-world data to assess its ability
to model satisfactorily various situations of interest. In this context, from an economic
viewpoint, we provide the estimation and visualization of business cycles fluctuations
for output in EU15 using fuzzy clustering to study the creation of groups of countries
with similar characteristics.

Given that there has been a growing interest lately in the approaches for de-trending
non-stationary times series and for representing their underlying trends, we will show
that our proposed technique has the following advantageswhen compared to thewidely
adopted filtering methods of Hodrick–Prescott (HP) (Hodrick and Prescott 1997) and
Baxter–King (BK) (Baxter and King 1999): First, it avoids the problem of a pre-
specified functional form of trend, since it lets the dataset itself serve as evidence to
support the model’s approximation of the underlying trend. Second, it does not require
a priori assumptions for the smoothing parameter. Third, it is able to capture the non-
linear characteristics that business cycles exhibit. Fourth, it is capable of capturing all
frequency ranges and all spectrum peak locations. Fifth, the distortionary effects it
creates are very limited even in the near unit root case and, sixth, using Monte Carlo
techniques it is clearly superior when compared to the HP and BK using various DGP
processes, including the near unit root case.1

The paper is structured as follows: Sect. 2 provides a literature review, Sect. 3
introduces the NNF; Sect. 4 derives the proposed filtering method and provides some
helpful results; Sect. 5 investigates NNF’s ability to capture the cycles generated by a
number of DGPs; Sect. 6 sets out the proposed econometric implementation; Sect. 7
presents the empirical results; finally, Sect. 8 concludes.

1 Other popular approaches include the Kalman filter. For an enlightening survey see Kim and Nelson
(1999) and for a rigorous analysis of the theory regarding models with non-stationary time series see Chang
et al. (2009). Also, several non-linear models have been estimated on real output growth (e.g. Terasvirta
1994). This strand of the literature assumes that output growth is measured accurately, which is quite
unlikely to happen since the data contain measurement errors (e.g. Zellner 1992). Hence, sampling all the
states conditional on the parameters is relevant (Giordani et al. 2007) but it is not true of threshold models
(Pitt et al. 2010). Pitt et al. (2012) used the particle filter to integrate out the states. Also, Malik and Pitt
(2011), using particle filtering theory, approximated the likelihood of the unobserved components.
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2 Background Literature

There is a plethora of studies in the literature suggesting that business cycles of a time
series exhibit nonlinear properties and thus nonlinear quantitative techniques should
be employed for the thorough examination of the problem. Neftci (1984), using a
finite Markov process, implemented a test to investigate whether US unemployment
is characterized by sudden drops or jumps. The results provided evidence in favor
of non-linearity of the time series. Falk (1986) re-evaluated the techniques used by
Neftci (1984) by applying them to time series data regarding US GNP, productiv-
ity and Investment. Diebold and Rudebusch (1989), using an ARIMA specification,
investigated the existence of asymmetries in US GDP time series. Scheinkman and
LeBaron (1989), in order to investigate the output of stochastic systems, created a
deterministic system whose chaotic output could mimic the behavior of a stochastic
system. The model provided evidence in favor of the existence of non-linearities in
the US stocks return data. In a seminal paper, Hamilton (1990) created a model that
could incorporate discrete shifts in the growth rate of non-stationary time series. The
model was tested using post-war data for USGNP, and the results provided evidence in
favor of non-linearities in business cycles. According to the paper’s findings, periodic
shift of growth is an inherent feature of the US economy. Beaudry and Koop (1993)
tested the existence of asymmetries in US GNP using an extended ARMA model and
after-war data. Their results confirmed the existence of asymmetries in the time series
examined.

Moreover, Balke and Fomby (1994) examined fifteen US macroeconomic time
series, using Tsay’s (1988) outlier specification. Their results provided evidence that
outliers are strongly associated with the business cycle of the time series under investi-
gation, which in turn confirms the non linear character of business cycles. Tanizaki and
Mariano (1994) developed a simulation based non-linear filter that could be applied
in non-normal and non-linear times series. The results showed that the estimates of
their technique were less biased than those provided by extended Kalman filtering.
Ramsey and Rothman (1996) conducted time series irreversibility test. Their results
were in favor of the existence of asymmetries. Brunner (1997) made an attempt to
reconcile the empirical literature regarding the existence of asymmetries in a time
series by implementing the majority of statistical tests used in the literature to investi-
gate the properties of US GNP. The results showed that the time series has non-linear
characteristics.

Asymmetric persistence of USGDP time series via a variety of non-linear statistical
tests was examined by Hess and Iwata (1997). Pesaran and Potter (1997) examined the
non-linearity of US output creating a model that allowed for floor and ceiling effects
that could alter the dynamics of growth. Their model provided evidence in favor of
asymmetries within the time series, validating the non-linear character of business
cycles series. Watanabe (1999) created a non-linear filter based on quasi- maximum
likelihood that could yield the exact likelihood of stochastic volatility models using
linear approximations. The implementation of the filtering technique on real time data
yielded promising results. Psaradakis and Sola (2003) considered the issue of testing
for asymmetries in business cycles. Their research showed that asymmetries are likely
to be detected in practice only when they are particularly prominent.
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Recently, Creal et al. (2010) created a robust band pass filter that decomposes a time
series into trend and unobserved component. According to their work, the unobserved
component is considered a cycle, in different amplitudes and phase shifts. The bench-
mark cycle of the filter was created using US data, and the implementation of their
technique yielded very satisfactory results. In the same spirit, Malik and Pitt (2011)
using particle filtering theory, derived the probability density function of unobserved
components in state space model and, thus, managed to approximate the likelihood of
these unobserved components. Their simulating results were very promising and the
derived likelihood function converges asymptotically to the true likelihood function
of the unobserved components. In another important work, Andreasen (2011) man-
aged to improve the accuracy and speed of Central Difference Kalman filter for DSGE
models in a Bayesian framework. Also, Guarin et al. (2013) proposed a nonlinear
filter based on the Fokker–Planck equation to estimate time varying default risk. The
implementation of their filter on Dow-Jones industrial average component companies
yielded promising results. Again, Andreasen (2013) incorporated a quasi-maximum
likelihood estimation on Central Differencing Kalman filtering, in an attempt to esti-
mate non linear DSGE models with non-Gaussian shocks. According to the paper’s
findings, the estimates are consistent and asymptotically normal for DSGE models
solved up to a third order.

Limited research has been done, so far, regarding the applicability of ANNs in a
business cycle framework. See, for instance, the papers by Kiani (2005, 2011) who
made use of ANNs in order to examine business cycles asymmetries and the fluc-
tuations of economic activity in CIS countries. For a non parametric business cycle
model that does not require the use of any functional form seeKauermann et al. (2012),
whereas for an assessment of business cycles dynamics through classical linear control
analysis see Wingrove and Davis (2012).

Kuan and White (1994) introduced the perspective of ANN to assess the non-
linearity of a time series. The results were discussed in a broader context with regards
to the non-parametric tests used in econometric literature that could incorporate the
non-linear properties of business cycles. Hutchinson et al. (1994) created an ANN
model for option pricing based on the asymmetry properties that the time series data
exhibit. Vishwakarma (1994) created an ANN model in order to examine the busi-
ness cycles turning points. The model was tested using monthly data for the US GDP
for the period 1965–1989. The results showed that the turning points identified by
the model were characterized by extreme accuracy compared to the official dates,
whereas the results confirmed the existence of asymmetries. Brockett et al. (1994)
developed a neural network model as an early warning system for predicting insurer
insolvency. According to their findings, based on a sample of US property liabil-
ity insurers, neural networks forecasting capabilities outperformed both the results
obtained by both discriminants analysis and the National Association of Insurance
Commissioners’ Insurance Regulatory Information System ratings.

Serrano-Cinca (1997), utilized a feedforwrad neural network model to in attempt to
classify companies on the basis of information provided by their financial statements,
utilizing a Spanish dataset. The findings were then compared with those obtained
by linear discriminant analysis and logistic regression, giving credit to the view that
neural networks outperformed the other methods. Faraway and Chatfield (1998) inves-
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tigated the predicting capabilities of a variety of neural networks models with those
obtained from Box–Jenkins and Holt–Winters methods, utilizing data on US indus-
try. According to their findings neural networks suffered from a convergence and
local mimina problems, which resulted in poor out-of-sample forecasting performance
when compared to previous methods. In this context, the authors suggest caution when
utilizing neural networks. Adya and Collopy (1998) investigated the forecasting capa-
bilities of neural networks (NNs) based on the effectiveness of validation and the
effectiveness of implementation, utilizing a sample of 48 studies that emerged in the
literature between 1988 and 1994. According to their findings, eighteen (18) stud-
ies supported the potential of NNs for forecasting and prediction. Swanson and White
(1995, 1997a, b) compared the predictive power of non-linear, linear andANNmodels
in economic and financial time series data. Their results provided evidence in favor of
the predictive power of ANNs, implying that time series exhibit non-linear properties.
Gencay (1999) and Qi and Maddala (1999) tested the use of both ANN and linear
models in order to determine the predictive power on both economic and financial
time series data. Their results provided strong evidence in favor of ANNs. Bidarkota
(1999) investigated asymmetries in the conditional mean dynamics using GDP data
of four US economic sectors, finding evidence of non-linearities in some US sectors.

Qi (2001) employed ANNs in order to model non-linearities of business cycles dur-
ing US recessions. Anderson and Ramsey (2002) examined how dynamical linkages
between indices of industrial production of the US and Canadian economies affect
business cycles oscillation as well as their synchronization properties. Andreano and
Savio (2002) investigated asymmetries of business cycles time series, using Markov
switching techniques on data for G-7 countries. Their results suggest that asymmetries
were present in most countries except for France, Germany and UK. Clements and
Krolzig (2004) investigated the existence and identification of a common growth cycle
among EU countries, using a Markov vector autoregressive process. Their main find-
ing was that there exists a common unobserved component that governs the common
growth cycle. Binner et al. (2002), constructed aweighted indexmeasure ofmoney uti-
lizing the “Divisia” formulation and neural networks for the economy of Taiwan. The
authors compared the inflation forecasting potential based on their approach with the
traditional approach of simple sum counterparts. According to their findings, neural
networked based approaches were found to be superior in terms of inflation tracking
than the simple sum counterparts. The same findings were in force when the forecasts
of the neural network approach were compared to the Vector Error Correction models
forecasts (Binner et al. 2004). The robustness of findings of the previous studies was
validated by Binner et al. (2005) who utilized data on the euro area and compared both
the in-sample and out of sample forecasting capabilities of their neural network spec-
ification against the univariate autoregressive integrated moving average and vector
autoregressive models. According to their findings, the neural networks specification
was found to be superior in all cases.

Kiani and Bidarkota (2004), using a different data set and alternate regime switch-
ing models encompassing features to account for time varying volatility, outlier and
long memory, showed that business cycle asymmetries were prevalent in all the G7
countries except France and UK. Nevertheless, Kiani (2005, 2007) and Kiani et al.
(2005) managed to identify the existence of asymmetries in all G-7 countries time
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series using NNs. Ozbek and Ozlale (2005), using a non-linear state space model and
Kalman filtering, assessed the fluctuations of the Turkish economy. Aminian et al.
(2006), using data on US Real Gross Domestic production and Industrial Production
investigated the coefficient of determination which accurately measures the ability of
linear or nonlinear models to forecast economic data. Their findings gave credit to
the view that neural networks outperform linear regression models due to the inherent
nonlinearities of the data. Kiani and Kastens (2006) employed ANNs in a business
cycles framework in order to assess recessions. Again,Kiani (2011) investigated asym-
metries of business cycles fluctuations among CIS countries using ANNs. Kauermann
et al. (2012) employed a non-parametric business cycle model that does not require
the use of any specific functional form.

In conclusion, a plethora of studies suggest that business cycles exhibit non-
linearities and, thus, non-linear techniques are highly relevant.

3 ANNs as Global Approximators of Trend

3.1 General Formulation of ANNs

According to Pollock (2000), filtering techniques in business cycle analysis is the
notion that an economic time series can be represented as the sumof a set of statistically
independent components each of which has its own characteristic spectral properties
and if the frequency ranges of the components are completely disjoint, then it is possible
to achieve a definitive separation of the time series into its components. However, if
the frequency ranges of the components overlap, then it is still possible to achieve
a tentative separation in which the various components take shares of the cyclical
elements of the time series. Contrary to an important strand of the literature (see,
among others, Oh et al. 2008), in this work, we focus on models with non-random
walk trend components.

Consider a time series denoted by xt , t ∈ T ⊆ R
+. Following Hodrick and Prescott

(1981) any time series can be decomposed into a (non-stationary) trend component
and a (stationary) cyclical component. Therefore, any observed time series has the
following representation:

xt = ct + gt (1)

where xt denotes the observed time series; ct denotes the unobserved cyclical compo-
nent of the observed time series xt ; gt denotes the unobserved trend that the observed
time series xt exhibits , t ∈ T ⊆ R

+ denotes the time subscript.2 Here, gt is the struc-
ture around which ct is fluctuating. In other words, we have decomposed the structure
into long phase movement gt and shorter fluctuations ct .

In this work, we use artificial neural networks (ANNs) to estimate the long term
trend gt . Our aim is to quantify ct as trajectory over t as the fluctuations around gt and

2 There is also a seasonal component, which is removed when seasonally adjusting the dataset (Hodrick
and Prescot 1981, 1997).
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from this trajectory allow for an economic interpretation. Of course, the mechanism
behind our approach is, in principle, the one that is being used so far by all the relevant
filters in the empirical literature. Nevertheless, in ourmodelwe assume that the trend of
a time series gt is the component which comprises only non-cyclical elements in such
a way that all the cyclical elements regardless of their frequency range are included
in ct .3

Themain idea in this paper is to express the trendnot as a pre-specified formbasedon
a priori assumptions, but rather let the dataset itself determine the specification of the
underlying trend. In other words, instead of fitting the data with a pre-specified trend,
ANNs let the dataset itself serve as evidence to support the model’s approximation of
the trend.

ANNs are data-driven and self-adaptive, nonlinear methods that do not require
specific assumptions about the underlying trend (Zhang and Berardi 2001). In math-
ematical terms, ANNs are collections of activation functions that relate an output
variable Y to certain input variables X ′ = [X1, . . . , Xn]. The input variables are
combined linearly to form K intermediate variables or projections Z1, . . . , ZK :
Zk = X ′βk(k = 1, . . . K ) where βk ∈ R

K are parameter vectors. The intermedi-
ate variables are combined non-linearly to produce Y:

Y =
K∑

κ=1

aκϕ (Zκ)

where ϕ is an activation function, the αk’s are parameters and m is the number of
intermediate nodes (Kuan andWhite 1994). By combining simple units with interme-
diate nodes, the NN can approximate any smooth nonlinearity (Chan and Genovese
2001). As demonstrated by Hornik et al. (1989, 1990), ANNs provide approxima-
tions to a large class of arbitrary functions while keeping the number of parameters
to a minimum. In other words, they are universal approximators of functions. Also,
they can approximate their derivatives, a fact which justifies their success in empirical
applications (Hornik et al. 1990; Brazili and Siltzia 2003).

3.2 Global Approximation of Trend

Below, we will prove mathematically that the proposed ANN specification for the
trend gt is a global approximation to any arbitrary trend.

Now, Theorem 1 holds.

3 For the standard approaches, the trend of a time series is usually regarded as the component, which
comprises its non-cyclical elements together with the cyclical elements of lowest frequency (Kozicki 1999).
In particular, according to Pollock (2000) popular filters such as the HP, allow powerful low-frequency
components to pass through into the de-trended series when they ought to be impeded by the filter and this
deficiency is liable to induce spurious cycles in de-trended data series. This is one of the drawbacks of the
HP filter. Of course, there exist other model-based approaches that constitute important alternatives (e.g.
Harvey and Todd 1983; Hillmer and Tiao 1982; Koopman et al. 1995) which, however, impose features that
are often regarded as being undesirable (Pollock 2000).
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Theorem 1 Consider X ⊆ R
N a compact subset of R

N for some N ∈ N and
C(X) is the space of all real valued continuous functions in X. Let ϕ, belonging
to C(X), be a non-constant, bounded and continuous function. Then, the family

F =
{

F (x) ≡ ∑N
i=1 ai ϕ

(
wi

Tx + bi
)
, x ∈ X and F (x) ∈ C (X)

}
is dense in C (X) for

any compact subset of X, where: ai, bi ∈ R, wi ∈ R
m are parameters, i ∈ {1, . . . , N}

is an index and T denotes transposition.

Proof The proof is a straightforward application of Hornik’s (1991) 2nd Theorem.
We make the assumption that between any two points in time there are an infinite

number of points in time. Hence, the variable time, ranges over the entire real number
line or, in our context, over a subset of it : the non-negative reals. In another formulation,
time is a continuous variable.

Next, in view of Definitions 1 and 2, (Appendix) (trend set and time series), the
following holds (Lemma 1): ��
Lemma 1 If gt j , t ∈ T ⊆ R

+, j ∈ J ⊆ R is an arbitrary time series representing
trend, such that gt j ∈ R∀ j ∈ J and

{
gt j : j ∈ J

}
is the trend set that is closed and

bounded, then the trend set is a compact subset of R.

Proof See Rudin (1976).
Next, based on Lemma 1, as well as on Lemma 2, below, we will prove Theorem

2, which shows that the NN trend is a global approximation to any arbitrary time
trend. ��
Lemma 2 If T is a compact set and F(t) ≡ ∑N

N=1 siϕ(βi t) is: (i) non constant, (ii)
bounded and (iii) continuous, then any function of the form:k(t) ≡ h(t)+F(t), where:
h(t) is a linear function of t ∈ T , is: (i) bounded, and (ii) continuous.

Proof The Proof is trivial. ��
Theorem 2 If

⋃
j∈J gt j is the trend set of a time series, then the family of functions

F = {F (t) ∈ C(
⋃

j∈J gt j ) : F(t) ≡ d + ct + ∑N
i=1 aiϕ(βi t), αi , βi , d, c ∈ R} is

dense in C(
⋃

j∈J gt j ) for every compact subset
⋃

j∈J gt j ⊆ R.

Proof See Appendix. ��
Theorem 2 shows that the ANN trend is a global approximation to any arbitrary

time trend.

4 Construction of the Filter

4.1 Mathematical Derivation

We have seen that any time series xt can be expressed as:

xt = ct + gt (2)
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As stated earlier, we assume that the trend of a time series gt is the component,
which comprises only non-cyclical elements in such away that all the cyclical elements
regardless of their frequency range are included in ct .

Since trend in time series is not a priori known, in view of Theorem 2,we may
assume, without loss of generality, that the general representation of the global approx-
imation (gt ) is the following:

gt = a0 + δt +
m∑

k=1

αkϕ (βk t) (3)

where a0, δ, αk, βk ∈ R∀m = 1, ..N denote parameters and ϕ denotes an activation
function that is a non-constant, bounded and continuous function. Therefore, the gen-
eral representation of any time series described in (2), with the use of the specification
in (3), can be expressed as:

xt = ct + a0 + δt +
m∑

k=1

αkϕ (βk t) (4)

Thus:
ct = xt − [a0 + δt +

m∑

k=1

αkϕ (βk t)] (5)

4.2 Properties of the Filter

(a) Linear Time Trend as Degenerate form of NNF
In the seminal contribution by Hodrick and Prescott (1981, 1997), the smoothing
parameter λ is a positive number which, ceteris paribus, penalises variability in the
trend component series. Hence, the larger the value of λ, the smoother the cyclical
component series. Also, according to Hodrick and Prescott’s claim (1981, 1997, p.
3) in their seminal paper, as λ becomes sufficiently large, it degenerates to the least
squares fit of a linear time trend model.4

In what follows, we will prove formally the aforementioned claim by Hodrick and
Prescott’s (1981, 1997, p. 3) for our specification, which constitutes, as shown, a global
approximation. More precisely, we will show that for a sufficiently large number of
nodes, at the optimum, the limit of solutions to the minimization problem, is the least
squares fit of a linear time trend model.

Theorem 3 (Linear time trend as degenerate form of NNF) If βm̄l0
= max{βm̄l , βm̄l ∈

R
m}, then the trend approximation produced by NNF is linear, i.e. gt = γ + δt , ∀ m

∈{1,…, M} and ∀xti , i ∈ I , where I is considered to be a compact subset of R.

Proof See Appendix. ��

4 In this section, for reasons of notation, when we consider fixed (instead of free) parameters, then the
respective parameter is denoted by an upper bar.
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(b) Mean Value of the Cycle is zero
In the seminal work by Hodrick and Prescot (1981, p. 3, 1997, p. 3), which was based
on the so-called Whittaker-Henderson Type A method (Whittaker 1923), it is claimed
that, regarding the business cycles defined as deviations from trend, the “conceptual
framework is that over long time periods, their average is near zero”. In what follows,
we will prove mathematically their famous claim, namely that the mean value of the
cycle produced by NNF is equal to zero. Based on the definitions of (i) trend set, (ii)
time series as a random variable and (iii) time series set, respectively (Definitions 1-3,
Appendix), we state our results in the form of two theorems, one more general and
one more case specific.

Theorem 4 (Mean value of the cycle is zero) For any time series xt j ∀ j ∈ J and ∀t ∈
T ⊆ R

+ that can be decomposed into trend and cycle as follows: xt j = gt j + ct j the
mean value of the cycle ct j = xt j −gt j ∀ j ∈ J is equal to zero, i.e. E

(
ct j

) = 0 ∀ j ∈ J ,
if the trend set

⋃
ti gti is a dense subset of the set of time series

⋃
ti gti ⊆ ⋃

t j
xt j .

Proof See Appendix. ��

The rationale behind this important finding is that if the trend set is dense in the
time series set, then the expected value of any cycle defined as trend deviation is zero.
Nevertheless, this property does not necessarily hold for any cycle regardless of the
method employed, since the aforementioned Theorem pre-supposes the trend set to
be dense in the time series set.

Theorem 5 (Mean value of the NNF cycle is zero) The mean value of the cycle of a
time series produced by NNF is equal to zero, i.e. E

(
ct j

) = 0,∀ j ∈ J provided the
trend set

⋃
ti gti is a dense subset of the set of time series

⋃
ti gti ⊆ ⋃

t j
xt j .

Proof See Appendix. ��

We have proved that the cycles produced by the proposed technique have a mean
value equal to zero. The rationale behind this finding is that the remaining part (the
cycle) is non-negligible but, on average, equal to zero. In other words, business cycles
as deviations from trend are disturbances from a growth path (positive or negative)
that lead, sooner or later, to a return to the growth path. If this wasn’t the case and
there were some non-trivial distinctive trend in time, this would have been captured
by the NNF.

The economic intuition of this finding is that an economy, despite business cycles,
moves into new neighbourhoods of growth, i.e. new growth paths (positive or negative)
and, thus, the kind of wave-like movement is inherent to economic growth. This
implies that growth occurs despite a business cycle process and as a result these
cyclical fluctuations are no barrier to economic growth, in the sense that deviations
below trend are asymptotically not necessarily expressions of deep crisis or generalised
breakdown, and so on. After all, several well-known economists, such as Schumpeter
(1939), believed that recessions are to be followed by periods of fast growth.
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5 Simulation-Based Comparison of NNF

5.1 Empirical Estimation of NNF

As seen earlier, the proposed specification, based on Eq. (3), is as follows:

xt = a0 + δt +
m∑

k=1

αkϕ (βk t) + ut

where xt is the time series, m is the number of nodes, ut is the error term and t is time.
We will make use of a typical activation function which is continuous, bounded,

differentiable and monotonic increasing (e.g. Hornik et al. 1989, 1990), namely
ϕ (z) = 1

1+e−z , z ∈ R. For other activation functions, see Bishop (1995).5

In order to empirically estimate the parameters of our model, we are based on the
aforementioned equation, which has an estimable form. We propose the following
estimation procedure that consists of a simple seven (7) step algorithm.

Algorithm 1: NNF filtering
Step 1: For m = 1, βl

k, k = 1, . . . , m, are drawn from a uniform distribution on a
hyper-rectangle � ⊂ R

m .
Step 2:Given these parameters, estimate a0, αk, δ, k = 1, . . . , m bymeans ofOrdinary
Least Squares (O.L.S.) applied to the following equation:

xt =
[

a0 + δt +
m∑

k=1

αkϕ
(
β i

k, t
)]

+ ut

t = 1 . . . T .
Step 3: For the estimated parameters a0, αk, δ, k = 1, . . . , m which can be regarded
as known, consider β i

k, k = 1, . . . , m as a parameter and find its value routinely
using numerical analysis techniques for non-linear equations (e.g. Broyden–Fletcher–
Goldfarb–Shannon method).

Step 4: For theses values of β i
k, k = 1, . . . , m, estimate the set of parameters a0, αk, δ,

k = 1, . . . , using OLS.

Step 5: For the whole set of parameters a0, αk, δ, k = 1, . . . , m and β i
k, k = 1, . . . , m,

compute a relevant criterion, such as the SchwartzBayes InformationCriterion (BIC).6

Step 6: Repeat steps 1–5 for m = 2, 3, 4 . . . and keep the value of m that optimizes the
aforementioned criterion. Form∗ ∈ {1, ..N } that optimizes the criterion selected, keep
the calculated values of βm∗ , and the estimated values am∗ , a0m∗ , δm∗ Now, for these

5 However, in general, the empirical results are robust, regardless of the activation function used because
of the typical properties they posses (Haykin 1999).
6 For an extensive survey on methods regarding the selection of the number of nodes in neural networks or
for the appropriate model selection using information criteria see, among others, Sheela and Deepa (2013)
and Konishi and Kitagawa (1996), respectively.
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values of m∗, βm∗ , am∗ , a0m∗ and δm∗ we get the values of ct which are the following:

ct = xt − [a0m∗ − δm∗ t −
m∗∑

k=1

αk ϕ
(
βk t

)] (6)

5.2 Arbitrary Frequency Domain

As stated earlier, one of the most serious problems that the traditional filters, such as
HP and BK, face is their inability to extract the cyclical component from a time series
that exhibits a cycle in different frequencies from the ones dictated by their arbitrarily
chosen smoothing parameter. In this context, in order to investigate the ability of our
filer to approximate trends and, therefore, cycles of any arbitrary frequency we make
use of the data generating process (DGP) proposed in Guay and Saint-Amant (2005):

yt = μt + ct (7)

where

μt = μt−1 + εt , εt ∼ N I D
(
0, σ 2

ε

)

ct = ϕ1ct−1 + ϕ2ct−2 + nt , nt ∼ N I D
(
0, σ 2

n

)

Equation (7) defines yt as the sum of a permanent componentμt ,which corresponds
to a random walk, and a cyclical component ct , which corresponds to a second order
autoregressive process AR(2).7 We also assume that εt and nt are uncorrelated. Thus,
the following equation expresses the DGP:

yt = μt−1 + ϕ1ct−1 + ϕ2ct−2 + vt (8)

where ϕ1 + ϕ2 < 1. The use of an AR(2) series is useful because its spectrum may
have a peak in either business cycles frequencies or at zero frequency. Now, despite
the fact that this process is stationary, a continuity argument provides information also
for the case of non-stationary series since, in a finite sample, any non-stationary series
can be approximated by a stationary process and vice versa (Campbell and Perron
1991).

The spectrum of the process described in (8) is given by:

fy (ω) = σ 2
v

1 + ϕ2
1 + ϕ2

2 − 2ϕ1 (1 − ϕ2) cosω − 2ϕ2cos2ω
(9)

and the location of its peak is given by the expression:

− σ−2
v f 2y (ω) 2sinω[ϕ1 (1 − ϕ2) + 4ϕ2cosω (10)

7 This selection of the cyclical component was made so that the peak of the spectrum in our cycle could
be either at zero frequency or at business cycle frequencies.
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Table 1 Filter correlation with the true cycle when σε/ση = 10

σε / ση ϕ1 ϕ2 CorNNF CorHP CorBK NNF range HP range BK range

10 0 0 0.81 0.08 0.03 0.77, 0.85 −0.07, 0.21 −0.11, 0.16

10 1.2 −0.25 0.82 0.08 0.08 0.77, 0.85 −0.11, 0.28 −0.13, 0.32

10 1.2 −0.40 0.88 0.13 0.11 0.83, 0.91 −0.12, 0.36 −0.16, 0.36

10 1.2 −0.55 0.87 0.14 0.12 0.84, 0.89 −0.08, 0.33 −0.12, 0.32

10 1.2 −0.75 0.81 0.15 0.16 0.78, 0.85 −0.01, 0.44 −0.04, 0.36

Table 2 Filter correlation with the true cycle when σε/ση = 5

σε / ση ϕ1 ϕ2 CorNNF CorHP CorBK NNF range HPrange BK range

5 0 0 0.86 0.15 0.05 0.84, 0.89 0.02, 0.27 −0.09, 0.20

5 1.2 −0.25 0.91 0.16 0.17 0.89, 0.93 −0.01, 0.36 −0.05, 0.38

5 1.2 −0.40 0.91 0.23 0.23 0.89, 0.94 −0.01, 0.45 −0.03, 0.47

5 1.2 −0.55 0.92 0.24 0.26 0.90, 0.94 0.01, 0.44 0.03, 0.46

5 1.2 −0.75 0.92 0.29 0.28 0.89, 0.94 0.11, 0.44 0.09, 0.45

Thus, fy (ω) has a peak in frequencies other than zero for:

ϕ2 < 0 and

∣∣∣∣
−ϕ1 (1 − ϕ2)

4ϕ2

∣∣∣∣ < 1 (11)

Then, fy (ω) has a peak in frequencies given by the expression:

ω = cos−1
(−ϕ1 (1 − ϕ2)

4ϕ2

)
(12)

Therefore, in order to investigate the ability of our proposed filter to approximate
low frequency cycles we make use of the DGP in Eq. (8) with ϕ1 set at the value
of 1.2 and different values of ϕ2 in order to control for the location of the peak in
the spectrum of the cyclical component. We also vary the standard error ratio for the
disturbances σε/σn so as to change the relative importance of each component. Here,
we have to bear in mind that the peak of the DGP in use is located in the business
cycle frequencies dictated by HP and BK, when ϕ2 < −0.43. The resulting time series
contains 150 observations, a standard size for macroeconomic time series, while the
number of iterations was set to 10,000. The smoothing parameters used for the HP
and BK are set equal to 1600 and 6–32 respectively as the relevant literature suggests
(e.g. Baum et al. 2006), contrarily to the NNF which is data driven. The HP and BK
correlation coefficients and their respective ranges come from Guay and Saint-Amant
(2005, pp. 148–151) where the produced time series also contained 150 observations,
while the number of replications was equal to 500.8

The results of all filters are summarized in Tables 1, 2, 3, 4 and 5.

8 Despite the difference in the number of iterations between the two procedures, in an econometric per-
spective, the average correlation coefficient in both procedures is robust, and the only difference lies in the
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Table 3 Filter correlation with the true cycle when σε/ση = 1

σε / ση ϕ1 ϕ2 CorNNF CorHP CorBK NNF range HP range BK range

1 0 0 0.91 0.59 0.19 0.88, 0.92 0.49, 0.70 0.05, 0.32

1 1.2 −0.25 0.91 0.51 0.53 0.88, 0.92 0.33, 0.68 0.36, 0.71

1 1.2 −0.40 0.90 0.71 0.70 0.88, 0.92 0.56, 0.82 0.55, 0.81

1 1.2 −0.55 0.90 0.76 0.73 0.88, 0.92 0.56, 0.82 0.61, 0.83

1 1.2 −0.75 0.90 0.83 0.79 0.88, 0.92 0.75, 0.89 0.69, 0.87

Table 4 Filter correlation with the true cycle when σε/ση = 0.5

σε / ση ϕ1 ϕ2 CorNNF CorHP CorBK NNF range HP range BK range

0.5 0 0 0.93 0.82 0.36 0.90, 0.95 0.75, 0.88 0.25, 0.47

0.5 1.2 −0.25 0.90 0.61 0.63 0.88, 0.92 0.41, 0.79 0.45, 0.78

0.5 1.2 −0.40 0.88 0.84 0.81 0.86, 0.91 0.73, 0.92 0.71, 0.88

0.5 1.2 −0.55 0.88 0.89 0.85 0.87, 0.91 0.83, 0.94 0.78, 0.91

0.5 1.2 −0.75 0.87 0.94 0.89 0.85, 0.91 0.90, 0.96 0.83, 0.93

Table 5 Filter correlation with the true cycle when σε/ση = 0.01

σε / ση ϕ1 ϕ2 CorNNF CorHP CorBK NNF range HP range BK range

0.01 0 0 0.99 0.98 0.55 0.96, 1.00 0.96, 0.99 0.48, 0.63

0.01 1.2 −0.25 0.92 0.66 0.68 0.90, 0.94 0.45, 0.83 0.52, 0.82

0.01 1.2 −0.40 0.90 0.90 0.86 0.88, 0.92 0.82, 0.96 0.79, 0.92

0.01 1.2 −0.55 0.88 0.96 0.90 0.86, 0.90 0.91, 0.99 0.85, 0.94

0.01 1.2 −0.75 0.87 0.99 0.93 0.86, 0.90 0.97, 1.00 0.89, 0.96

The results suggest that irrespectively of the variance ratio and the value of autore-
gressive parameters used, the proposed filter (NNF) exhibits a very high correlation
equal to approximately 90% with the true cyclical component of the time series.
Specifically, the proposed NNF produces robust estimates of the cycles in the series
even when the variance of the cycles is very small in the series i.e. σε/σn > 1, and (or)
the frequency of the cycles are located close to zero, i.e. ϕ2 > −0.43. This, in turn,
implies that the proposed filter could be used irrespectively of the cycle frequency and
location of the peak in the cycle. Hence, NNF is capable of capturing all frequency
ranges and all spectrum peak locations. On the contrary, both HP and BK do well only
when the cyclical component of the time series is located in their frequency domain.
However, when this is not the case, their ability to approximate the cycle is very poor,
in contrast to the proposed filter (NNF).

range intervals of their estimates. To this end, without loss of generality, 10,000 iterations are considered
to be an asymptotic estimate. Nevertheless, our analysis is based on the average estimates.
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5.3 Volatility, Amplitudes and Phase Shifts

In this section, in order to assess the ability of NNF to extract cycles that incorporate
changes in volatility, amplitudes and phase shifts, we adopt the DGP in Creal et al.
(2010). Analytically, we use the following data generating process:

yi,t = τi,t + δi ψ
q
t + εi,t , εi,t ∼ NID

(
0, σ 2

i,ε

)
(13)

τi,t+1 = τi,t + βi,t (14)

βi,t+1 = βi,t + ζi,t , ζi,t ∼ NID
(
0, σ 2

i,ζ

)
(15)

(
ψ

j
t+1

ψ
+ j
t+1

)
= ρ

(
cosλ sinλ

−sinλ cosλ

) (
ψ

j
t

ψ
+ j
t

)
+

(
ψ

j−1
t

ψ
+( j−1)
t

)
, j = q, q − 1, . . . (16)

(
ψ0

t
ψ+0

t

)
=

(
kt
k+

t

)
,

(
kt
k+

t

)
∼ NID

(
0, σ 2

k I2
)

(17)

In Eqs. (13), τi,t and εi,t are the idiosyncratic trend and irregular components of
the i-th variable, respectively. The cyclical component ψ

q
t is specified as a smooth

cyclical process where q is an integer denoting the level of smoothness. The cycle is
shared by all series and is scaled for each series with δi .

In Eqs. (14) and (15) the individual trend component is specified as a smooth
local linear trend process, where βi,t is the growth of trend. In Eqs. (16) and (17) the
dynamics of the common cycle ψ

q
t is modeled as a q-th ordered stochastic model

where ρ denotes the damping parameter with the restriction of ρ ∈ (−1, 1) so as to
ensure stationarity; λ is the frequency of the cycle measured in radians with the period
of the cycle equal to 2π

λ
. Thus, the DGP. described by Eqs. (13)–(17) generates a series

that can be decomposed into trend and cycle without stochastic volatility.
Now, in order to also account for stochastic volatility in the disturbances we allow

in Eq. (13) the disturbances to follow a random walk process whose innovations are
a mixture of a standard Gaussian noise sequence and a stochastic indicator variable
with known probabilities:

σ 2
i,t,ε = exp

(
hi,t,ε

)
(18)

hi,t+1,ε = hi,t,ε + Ki,t,εωi,t,ε, ωi,t,ε N I D (0, 1) (19)

Similarly, we allow in Eq. (24):

σ 2
i,t,k = exp

(
hi,t,k

)
(20)

hi,t+1,k = hi,t,k + Ki,t,kωi,t,k, ωi,t,k N I D (0, 1) (21)

Lastly, we also allow in Eq. (15):

βi,t+1 = βi,t + Ki,t,ζ ζi,t , ζi,t ∼ N I D (0, 1) (22)
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Table 6 Correlation coefficients

Model Correlation Range

NNF (number of nodes=1) 0.503 0.451–0.555

NNF (number of nodes=2) 0.884 0.781–0.974

NNF (number of nodes optimal using BIC) 0.891 0.882–0.981

Table 7 Correlation coefficients

All-SV No-SV Break in ρ Break in ρ,
λ, ξi

Coint No phase
shifts

NNF (number of
nodes=1)

0.413–0.512 0.301–0.411 0.054–0.127 0.017–0.223 0.213–0.415 0.417–0.816

NNF (number of
nodes optimal
by BIC)

0.818-0.945 0.791–0.912 0.818–0.994 0.821–0.994 0.890–0.997 0.812–0.913

Thus, the DGP described by Eqs. (18)–(22) and (13), (14) and (16) generates a
series that can be decomposed into trend and cycle with stochastic volatility.

Next, using the results by Creal et al. (2010, p. 706) and 10,000 iterations in the
D.G.P. that does not account for stochastic volatility, we present the range of the cor-
relation coefficients of the cycle derived by means of our proposed filtering technique
(NNF) and their actual cycle dictated by the selection of posteriors in Creal et al.
(2010, Table II).

The results in Table 6 suggest that the NNF exhibits a very high correlation with
the actual cycle generated by the GDP and the selection of posteriors in Creal et al.
(2010). Specifically, the use of BIC as a selection criterion for the optimal number of
nodes in the NNF is of crucial importance, since the ad-hoc selection of nodes exhibits
a significantly lower ability to capture the cycle.

The robustness of NNF is further confirmed in Table 7 where the range of the
correlation coefficients between the cycles derived from the NNF and the actual cycles
by the DGPs, based on Creal et al. (2010, Table IV), are presented.

5.4 Distortionary Effects and Near-Unit Root Behaviour

In this subsection, in order to measure the distortionary effect of NNF in comparison
to HP and BK, for different values of the smoothing (tuning) parameters, following
Pedersen (2001) we employ the following DGP.:

yt = ϕyt−1 + εt (23)

yt = ϕ1yt−1 + ϕ2yt−1 + vt (24)

where εt , vt ∼ N
(
0, σ 2

)
.
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Table 8 Size of distortions of
filters measured for 5
autoregressive processes with
31,416 gridpoints on
frequencies, multiplied by 1000

AR(1)

Cyclical components ϕ = 0.90 ϕ = 0.95

HP 73.6 44.06

BK 74.7 41.8

NNF1 (number of nodes
optimal using BIC)

11.271 9.293

NNF2 (number of nodes=2) 13.535 11.201

The AR(1) data generating process described in Eq. (23) was implemented with
different values ofϕ. Analytically,wemade use of the values ofϕ = 0.90 andϕ = 0.95
in order to account for stationarity.

However, of great interest is also the so-called near unit root case which refers to
the stochastic trend case. In other words, we would like to comparatively examine
our model’s behaviour in terms of distortionary effects when a stochastic trend is
present. In this context, we used the values of ϕ = 0.99 and ϕ = 0.999 that resemble
a near unit root process. Furthermore, the AR(2) process described in Eq. (24) was
implemented using two near unit root specification for the values of ϕ1 = 1.3297 and
ϕ2 = −0.3318.

The distortionary effect of eachfilter is typicallymeasured as the absolute difference
between the true and the distorted cyclical component at frequency ωmultiplied by
the size of the grid on ω, using the following formula:

Q =
∑

ω∈W
|H (ω) − H∗ (ω)|2Sy (ω)�ω (25)

where � denotes the first difference operator.
If we, now, normalize the weights ω in (25) so as to sum up to unity we get:

Qω =
∑

ω∈W
|H (ω) − H∗ (ω)|v (ω) (26)

where v (ω) is the ratio of power spectral density of the input process, Sy (ω), at
frequency ω over the variance of the series, i.e.

v (ω) = 2Sy (ω) Δω∑
ω∈W 2Sy (ω) Δω

(27)

where
∑

ω∈W 2Sy (ω) Δω is approximately the variance of the series.
Tables 8 and 9 present the distortionary effects by means of HP, BK and NNF

using the normalized Q-stat given by Eq. (26).9 Additionally, the NNF simulations
were performed using 10,000 iterations, while the results of BK and HP come from
Pedersen (2001, p. 1094).

9 The smoothing parameters used for the HP and BK are again set equal to 1600 and 6–32 respectively, as
the relevant literature suggests (e.g. Baum et al. 2006), contrarily to the NNF which is data driven.
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Table 9 Near-unit root size of distortions of filters measured for 5 autoregressive processes with 31,416
gridpoints on frequencies, multiplied by 1000

AR(1) AR(2)

Cyclical components ϕ = 0.99 ϕ = 0.999

HP 9.331 0.092 2.86

BK 8.6 0.086 2.54

NNF1 (number of nodes optimal using BIC) 7.215 0.0053 0.325

NNF2 (number of nodes= 2) 9.343 0.0061 0.414

The results suggest that in the AR(1) process, based on the autoregressive DGP
used, the NNF presents significantly fewer distortions compared to HP and BK. Fur-
thermore, regarding the near-unit root case which corresponds to a stochastic trend, we
note that in the AR(1) and AR(2) processes, the NNF outperforms the other two tradi-
tional approaches, HP and BK, by an order of magnitude, approximately. According
to Phillips and Magdalinos (2008), under both strict and moderate non-stationarity,
central limit theory indeed applies, while such systems may also be more realistic for
practical work.

Despite the fact that both HP and BK filters perform better when they get closer to
the near-unit root case, the NNF exhibits fewer distortions compared to both HP and
BK, irrespectively of the (non-)stationarity characteristics of the series. This, in turn,
is attributed to the fact that the smoothing/tuning parameters are specified a priori for
HP and BK, in contrast to NNF. Actually, the fact that it is superior in all cases should
be attributed to the NNF being data-driven and a global approximation. Lastly, the fact
that NNF1 presents fewer distortions than NNF2 is clearly attributed to the different
number of nodes used in each case.

To sum up, while keeping the structure of the proposed approach relatively simple,
NNF exhibits superior performance compared to HP and BK in terms of distortionary
effects, including the stochastic trend case, where the NNF outperforms the traditional
approaches by an order of magnitude, approximately.

5.5 Mean Value of the Cycle

We have shown that if the trend set is dense in the time series set, then the expected
value of any cycle that is defined as trend deviation is zero. Also, we have proved
that the cycle produced by the NNF has a mean value equal to zero. In order to
test the empirical validity of our theoretical results, in what follows we report the
mean value of the cycle produced by NNF based on the various DGP processes that
have been employed using 10,000 iterations each. We can see from the following
Table that, as expected, the mean value of the cyclical component produced by NNF
is not significantly different from zero (0), a result which implies that the rigorous
theoretical framework developed, even in its strict form, is fully consistent with the
simulated results (Tables 10).
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Table 10 Expected versus observed values of the NNF cycle

DGP process Expected Observed p value
Mean value Ct Mean value Ct

Guay and Saint-Amant (2005)

σε / ση ϕ1 ϕ2

10 0 0 0.00 −0.032 0.515

10 1.2 −0.25 0.00 −0.044 0.612

10 1.2 −0.40 0.00 −0.003 0.781

10 1.2 −0.55 0.00 0.0045 0.677

10 1.2 −0.75 0.00 0.0376 0.981

5 0 0 0.00 −0.0036 0.627

5 1.2 −0.25 0.00 0.0047 0.335

5 1.2 −0.40 0.00 0.0038 0.871

5 1.2 −0.55 0.00 −0.0093 0.776

5 1.2 −0.75 0.00 0.0049 0.615

1 0 0 0.00 −0.0012 0.335

1 1.2 −0.25 0.00 0.0023 0.889

1 1.2 −0.40 0.00 0.0032 0.557

1 1.2 −0.55 0.00 −0.0044 0.345

1 1.2 −0.75 0.00 0.0072 0.635

0.5 0 0 0.00 −0.0033 0.454

0.5 1.2 −0.25 0.00 −0.0033 0.675

0.5 1.2 −0.40 0.00 −0.0047 0.224

0.5 1.2 −0.55 0.00 0.0046 0.456

0.5 1.2 −0.75 0.00 0.0058 0.724

0.01 0 0 0.00 0.0061 0.464

0.01 1.2 −0.25 0.00 −0.0054 0.238

0.01 1.2 −0.40 0.00 0.0018 0.895

0.01 1.2 −0.55 0.00 −0.0025 0.734

0.01 1.2 −0.75 0.00 0.0035 0.724

Pedersen (2001)

NNF-1 node

AR(1)

ϕ = 0.90 0.00 0.0012 0.198

ϕ = 0.95 0.00 0.0013 0.234

ϕ = 0.99 0.00 0.0015 0.337

ϕ = 0.999 0.00 0.0017 0.387

AR(2) 0.00 0.0017 0.357

NNF BIC nodes

AR(1)

ϕ = 0.90 0.00 −0.0015 0.475

ϕ = 0.95 0.00 −0.0022 0.345
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Table 10 continued

DGP Process Expected Observed p value
Mean Value Ct Mean Value Ct

ϕ = 0.99 0.00 0.0017 0.478

ϕ = 0.999 0.00 0.0016 0.464

AR(2) 0.00 −0.0003 0.497

Creal et al. (2010)

NNF-1 node 0.00 0.0043 0.623

NNF-2 nodes 0.00 −0.0013 0.623

NNF-bic nodes 0.00 0.0015 0.676

NNF-1 node

All SV 0.00 −0.0045 0.234

No SV 0.00 −0.0032 0.455

Break in ρ 0.00 0.0018 0.677

Break in ρ, λ, ξ 0.00 0.0021 0.453

Coint 0.00 0.0019 0.678

No Phase shifts 0.00 0.0017 0.482

NNF BIC nodes

All SV 0.00 0.0023 0.345

No SV 0.00 0.0035 0.675

Break in ρ 0.00 −0.0017 0.546

Break in ρ, λ, ξ 0.00 −0.0022 0.567

Coint 0.00 −0.0017 0.845

No Phase shifts 0.00 0.0013 0.456

p values correspond to the robust (HAC) t-statistic of regressing actual minus predicted on a constant

5.6 Forecasting Capabilities of NNF

In this sub-section we will formally compare the forecasting capabilities of the pro-
posed NN filtering method against the filtering techniques of BK and HP.10 We use
the baseline DGP proposed in Guay and Saint-Amant (2005), described earlier, with
σε/ση = 0.01,ϕ1 = 1.2,ϕ2 = 0.40, where all the filters seem to produce identical
results. The comparison among the filtering techniques will be based on the most pop-
ular mean value measures for forecasting, i.e. (a) the mean squared errors (MSE);(b)
The root mean squared errors (RMSE); (c) the mean absolute error (MAE); and (d)
the mean absolute scale errors (MASE). Additionally, for the sake of robustenss, we
will use a slightly different procedure to estimating the forecasting performance of the
various models. More precisely, the initial estimation period is retained but the ending
points of the estimation sample are shifted by one year resulting in a new estimation
sample. These samples are used to estimate model parameters and produce forecasts.

10 We would like to thank an anonymous referee for this suggestion.
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Table 11 In sample forecast for a horizon of 5 years

Filtering technique MSE RMSE MAE MASE

HP 0.134 0.352 0.139 0.127

BK 0.130 0.350 0.132 0.132

NNF-1 node 0.072 0.251 0.069 0.055

NNF-optimal number of nodes via BIC 0.033 0.165 0.028 0.044

As can be seen, the proposed model’s performance is superior in both, in-sample
and out-of-sample forecasts, for a horizon of up to 5 years (Tables 11, 12).

6 Econometric Estimation

Our approach should now be confronted with real word economic data to assess its
ability to model satisfactorily real word situations of interest. In this context, from an
economic viewpoint, we will provide the estimation and visualization of such business
cycles fluctuations for output in E15 using clustering in order to study the dynamics
of the European economies’ business cycles.

6.1 White Noise Analysis

In order to check whether the cyclical time series derived is indeed a cycle, we proceed
by implementing a white noise test. The sample autocorrelation function measures
how well a time series is correlated with its own past history. In order to test for
autocorrelation we use the Ljung and Box (1978) test (Q-stat) which tests the null
hypothesis of white noise for a maximum lag length k:

Q = n (n + 2)
h∑

j=1

ρ̂2
j

n − j
(28)

where n is the sample size, ρ̂ j is the sample autocorrelation at lag j , and h is the
number of lags being tested.

For significance level α, the critical region for rejection of the hypothesis of ran-
domness is Q > x21−a,h where x21−a, j is the α-quantile of the chi-square distribution
with h degrees of freedom. The alternative hypothesis is that at least one of these
autocorrelations is non-zero, so that the series is not white noise. In case the null
hypothesis is rejected, the time series is not white noise.

6.2 Cluster Analysis

As we know, cluster analysis is a methodology used to partition a set of observations
into a distinct number of clusters so that all observations within a group are similar,
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while observations in different groups are not similar. Its main advantage is that it cre-
ates natural groups rather than classifying them on the basis of some ad hoc criterion.11

The technique of “fuzzy” clustering will be used, because unlike the so-called
“hard” clustering approach that assigns each object to only one cluster, the fuzzy
clustering approach is much more suitable to analyze data where increasing indeter-
minateness is present. This powerful technique, assigns membership coefficients (i.e.
probabilities) which express the degree of “belongingness” of each object to each of
the clusters, in a way that the highest coefficient indicates the cluster to which this
country is most likely to belong.

Various strategies for the determination of the number of clusters have been pro-
posed.12 Probably, the most common method is k-means clustering (Hartigan and
Wong 1978; MacQueen 1967). Its main advantage is that the distance between any
two objects is not affected by the addition of new objects in the analysis. Thus, the
method of fuzzy k-means clustering is adopted (Bezdec 1981). It enables the clas-
sification of data objects that populate some multi-dimensional space into a number
of different groups (clusters). In our case the data objects are the time series of GDP
cycles for each EU15 economy.13

Let X = {X1, . . . , X K } be a set of K data objects, each of them belonging to
A ⊆ RN . For a given number of clusters, the method of fuzzy C-means clustering is
based on the minimization of an objective function defined as:

J (U, Y ) =
K∑

k=1

C∑

c=1

(ukc)
m‖xk − yc‖, 1 < m < +∞

where U = {ukc} is the participation matrix, defining a fuzzy partition of X, ‖ · ‖ is
the inner product, Y = {Y1, . . . , YC } is the set of the cluster centers, Yc ∈ A, c =
{1, . . . , C} and m is a parameter representing the weight attached to membership
participation.

7 Empirical Results

The data on real G.D.P. in 2000 prices are annual and come from AMECO (European
Commission). In the empirical analysis that follows we make use of the original (raw)
data that came directly from the AMECO database without using any transformation
i.e. logarithmic or exponential, so as to ensure that the initial crucial characteristics of
the data in use will not be lost.

11 Cluster analysis has often been applied to European data (see, e.g. Jacquemin and Sapir 1995; Artis and
Zhang 1997, 1998a, b).
12 See, among others, Bock (1974), Bozdogan (1993), Engelman and Hartigan (1969).
13 In order to avoid biased inferences due to differences in the size of each economy, the cyclical components
were standardized by their standard deviation.
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Table 12 Out of sample forecast for a horizon of 5 years

Filtering techniques MSE RMSE MAE MASE

HP 0.314 0.560 0.310 0.289

BK 0.310 0.544 0.317 0.414

NNF-1 node 0.065 0.250 0.061 0.055

NNF-optimal number of nodes via BIC 0.087 0.281 0.085 0.044

7.1 Stationarity Results

The results, which are available upon request by the authors, suggest non-stationarity
of the original times series. However, theNNFfiltered components have all been found
stationary.14

7.2 NNF Estimation

The estimated model’s p values for are shown in Table 12 and are very satisfactory
(Table 13).

The number of nodes m for each country has been selected using the AIC criterion
which is, in general terms, consistent with previous studies (e.g. Michaelides et al.
2010). The values of the AIC are presented in Table 14.

7.3 Cyclical Components

In this section,we extract the cyclical components of realGDP series for each economy
using the proposed NN specification as well as the most popular filters in the related
literature, namely the BK andHPfilters. In addition, we use the correlation coefficients
so as to econometrically establish any potential relation between them.

In brief, the BK Filter (Baxter and King 1999) has been used in a large number of
studies, as of yet (e.g.Agresti andMojon 2001; Stock andWatson 1999;Massmann and
Mitchell 2004). The BK filter is based on the idea of constructing a band-pass linear-
filter that extracts a frequency range corresponding to the minimum and maximum
frequency of the business cycle, cBK

t . The algorithm consists of constructing two low-
pass filters. The first passes through the frequency range [0, ωmax ], denoted ā(L),
where L is the lag operator, and the second through the range [0, ωmin], denoted
a(L). Subtracting these two filters, the ideal frequency response is obtained and the
de-trended time series is:

cBK
t = [ā(L) − a(L)]yt

14 We should note of course that the filters of BK and HP do not presuppose the use of stationary time
series, i.e. Sowell MLE estimations. Despite the fact that in the case of NNF this is also true, we examined
the stationarity characteristics of the cyclical components extracted for reasons of robustness. We would
like to thank an anonymous referee for this comment.
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Table 13 NNF estimates (Note t-statistic in parenthesis)

Country α0 δ α1 α2 α3 α4 α5 R2(ad j)

Greece 27.135 −0.036 3.084 0.000 0.000 0.000 0.000 0.984

(6.025) (−12.741) (0.631) (0.000) (0.000) (0.000) (0.000)

Italy 339.576 −0.084 16.493 23.981 0.000 0.000 0.000 0.997

(26.714) (−53.176) (2.199) (3.265) (0.000 (0.000) (0.000)

Spain 188.836 −6.137 30.066 33.495 0.000 0.000 0.000 0.991

(20.552) (−11.083) (4.373) (5.167) (0.000) (0.000) (0.000)

Portugal 20.857 −3.288 3.368 0.000 0.000 0.000 0.000 0.992

(14.191) (−22.160) (4.547) (0.000) (0.000) (0.000) (0.000)

France 448.832 −0.028 19.061 17.545 25.061 0.000 0.000 0.998

(34.714) (−16.980) (2.901) (2.661) (4.564) (0.000) (0.000)

Belgium 86.862 −0.061 2.925 2.131 2.431 8.642 0.000 0.996

(19.344) (−14.102) (2.029) (1.568) (1.612) (6.045) (0.000)

Luxembourg 5.117 −0.030 3.036 0.000 0.000 0.000 0.000 0.976

(4.061) (−19.207) (4.778) (0.000) (0.000) (0.000) (0.000)

Netherlands 135.502 −0.027 4.779 2.319 26.127 0.000 0.000 0.991

(21.881) (−34.311) (1.514) (0.803) (9.834) (0.000) (0.000)

Austria 58.574 −0.023 4.913 2.585 0.067 0.000 0.000 0.996

(28.112) (−93.015) (3.596) (2.167) (0.063) (0.000) (0.000)

Ireland 39.106 −0.036 11.371 24.806 0.000 0.000 0.000 0.986

(4.283) (−29.921) (3.129) (5.645) (0.000) (0.000) (0.000)

United Kingdom 383.043 −0.025 71.866 0.000 0.000 0.000 0.000 0.992

(22.769) (−54.179) (7.122) (0.000) (0.000) (0.000) (0.000)

Germany 676.411 -0.083 107.336 0.000 0.000 0.000 0.000 0.996

(39.172) (−3.581) (12.355) (0.000) (0.000) (0.000) 0.000

Denmark 433.773 −0.021 34.727 15.278 0.000 0.000 0.000 0.996

(27.082) (−26.386) (5.577) (1.073) (0.000) (0.000) (0.000)

Finland 61.566 −0.038 14.190 6.530 2.552 3.871 0.000 0.989

(10.098) (−59.846) (8.435) (3.819) (1.545) (2.329) (0.000)

Sweden 977.080 −0.053 82.872 27.884 103.491 0.000 0.000 0.991

(36.785) (−17.024) (3.891) (1.820) (4.403) (0.000) (0.000)

where yt is the original time series at hand. Based on the literature, we make use of
“Burns and Mitchell” settings for business cycle frequency range, i.e. two (2) to eight
(8) years and a moving average of three (3) years.

Next, we turn to the Hodrick–Prescott (HP) filter which has also been extensively
used in the literature, see, among others, Artis and Zhang (1997) and Dickerson et al.
(1998).The filter is based on the minimization of an arbitrary trend specification.
More specifically, the trend is obtained by minimizing the fluctuations of the actual
data around it, i.e. by minimizing the following function:
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Table 14 AIC criterion

Country AIC (1 node) AIC (2 nodes) AIC (3 nodes) AIC (4 nodes) AIC (5 nodes)

Greece 8.745 9.246 9.137 8.770 9.413

Italy 10.480 10.352 10.600 10.620 11.200

Spain 11.174 9.774 11.175 10.272 9.837

Portugal 6.150 6.378 6.308 6.460 6.364

France 9.894 9.989 9.857 10.387 10.700

Belgium 7.358 7.279 7.447 6.880 6.961

Luxemburg 5.627 5.667 6.100 5.870 5.820

Netherlands 9.411 8.648 8.387 9.280 8.764

Austria 6.766 6.657 6.633 6.710 6.715

Ireland 9.173 9.127 9.345 9.730 9.420

United 9.849 10.709 11.591 10.863 10.179

Germany 10.904 12.186 12.185 12.065 11.643

Denmark 10.550 10.350 10.626 10.709 10.913

Finland 7.195 7.798 7.168 6.805 7.085

Sweden 13.213 12.779 11.920 12.607 11.979

T∑

t=1

(
yt − y∗

t

)2 − λ

T −1∑

t=2

[(
y∗

t+1 − y∗
t

) − (
y∗

t − y∗
t−1

)]

where y∗
t is the long-term trend of the variable y and the coefficient λ > 0 determines

the smoothness of the long-term trend. The smoothing parameter used for yearly data
is equal to λ = 6.25.

Now, in order to get a visual inspection regarding the co-movement of the cycles
extracted via our proposed NN filter and the traditional filtering techniques we com-
puted the cyclical components of real GDP series for every economy in our dataset,
see Fig. 1.

It can be easily inferred that the NNF cycles are quite very close to the BK cycles.
The HP cycle often fails to follow closely their pattern. Also the linear cycle is clearly
not able to follow closely their pattern. Of course, our findings based on visual inspec-
tion of the cycles are also confirmed by the correlation coefficients among the various
cycles. See Fig. 2.

Also, the correlations of the GDP cycles among EU15 countries -for each filtering
technique- are presented compactly in Fig. 3. Again, we can see that the NNF and the
BK produce similar results.

7.4 White Noise

The results of the Ljung and Box test, which are available upon request, indicate a
rejection of the null hypothesis of white noise for all the countries’ cycles. In other
words, the existence of cyclical regularities is a valid hypothesis from a statistical
viewpoint for all EU15 countries.
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Fig. 1 Cyclical components of real GDP series
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Fig. 2 Correlation coefficients among cyclical components

7.5 Mean Value

We have proved that the cycle produced by the proposed NNF filter has a mean value
equal to zero. In what follows, we report the mean value of the cycles produced by
NNF based on the real world data for EU15.We can see in Table 15 that themean value
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Fig. 3 Correlation matrices for cycles between EU countries

of the cyclical component produced by NNF is not significantly different from zero
(0), a result which implies that the rigorous theoretical framework developed earlier,
even in its strict form, is fully consistent with real world empirical evidence on EU15
business cycles.

7.6 Clusters

Lastly, we conducted k-means (fuzzy) clustering in order to determine the groups of
countries that are formed in Europe (1960–2014). We conducted the analysis using
the NNF method with the secular components. The participation matrix was formed
for the optimum of five (5) distinct clusters (Table 16).

An interesting empirical finding is the distinction in core and periphery counties in
EU-15, a finding which is reported in the majority of studies in the relevant literature.
Among others, the existence of a core of countries with similar characteristics has
been documented by Bayoumi and Eichengreen, (1993), Dickerson et al. (1998),
(Artis and Zhang 1998a, b), Crowley and Christi (2003), Massmann and Mitchell
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Table 15 Mean values for
EU15 NNF business cycles

p values correspond to the robust
(HAC) t-statistic of regressing
actual minus predicted on a
constant

Country Mean value of
Ct

Observed mean
value of Ct

p value

1 Greece 0.00 −1.6e−14 1

2 Italy 0.00 8.1e−14 1

3 Spain 0.00 6.9e−14 1

4 Portugal 0.00 9.2e−15 1

5 France 0.00 −1.3e−13 1

6 Belgium 0.00 2.8e−14 1

7 Luxemburg 0.00 9.9e−15 1

8 Netherlands 0.00 −5.3e−14 1

9 Austria 0.00 2.2e−14 1

10 Ireland 0.00 5.6e−15 1

11 United 0.00 1.3e−13 1

12 Germany 0.00 2.0e−13 1

13 Denmark 0.00 −6.1e−14 1

14 Finland 0.00 −1.4e−14 1

15 Sweden 0.00 4.5e−15 1

Table 16 NNF participation matrix

Country Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Austria 0.03 0.71 0.08 0.05 0.13

Belgium 0.03 0.04 0.84 0.01 0.08

Denmark 0.82 0.03 0.07 0.02 0.06

Finland 0.31 0.05 0.32 0.06 0.27

France 0.07 0.04 0.76 0.01 0.13

Germany 0.01 0.92 0.02 0.01 0.03

Greece 0.11 0.21 0.56 0.03 0.09

Ireland 0.00 0.00 0.00 1.00 0.00

Italy 0.09 0.10 0.14 0.05 0.62

Luxemburg 0.02 0.92 0.03 0.01 0.02

Netherlands 0.03 0.04 0.13 0.14 0.65

Portugal 0.03 0.03 0.04 0.03 0.87

Spain 0.64 0.12 0.16 0.02 0.06

Sweden 0.90 0.02 0.04 0.01 0.04

UnitedKingdom 0.12 0.04 0.69 0.02 0.13

(2004), Camacho et al. (2006) and Concaria and Soares (2009). See also Canzoneri
et al. (1996), Bayoumi and Eichengreen (1997a, b), Taylor (1995) and Papageorgiou
et al. (2010). Table 17 summarizes the first best clustering results as reported by the
participation matrix presented earlier.
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Table 17 Clusters based on NNF filtering

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Denmark Austria Belgium Ireland Italy

Spain Germany Finland Netherlands

Sweden Luxemburg France Portugal

Greece

UK

The results show that there is a core—periphery distinction, although the core
seems to split into two main groups, one with Germany–Austria and another with
France–Belgium and the UK. The periphery is also split (Italy and Ireland-Spain–
Portugal in different groups). This pattern does not conform to a “classical” division
and shows that the definition of core and periphery is more involved. In the light
of recent developments after the sub-prime crisis it seems, however, that this view
has indeed considerable merit. The explosion of debt hit the different economies in a
different way. First, it brought to the foreground the differing Franco–German views
on the future of the Eurozone. Second, it emphasized the different patterns of reaction
to debt-related problems in Greece, Spain–Portugal and Italy. The fact that Ireland
forms a group of its own also emerged when foreign investment exploded in Ireland
and the country recovered fast from the subprime crisis. In the light of the recent
crisis, the exact position of Greece in the economic ‘map’ of Europe, is not very clear.
However, in the 1960s and part of the 1970s the country was growing fast and its
industrial base was developing rapidly. As a result, it is not surprising that it is part of
the core along with the UK and France. In the aftermath of the sub-prime crisis though,
it is even less surprising that it belongs to the same group with the UK, which is not
part of the Eurozone. Therefore, the clustering approach reflects various factors which
are consistent, for the most part, also with what we know after the subprime crisis.

8 Conclusions

It is widely hailed that a major limitation in examining the properties of a time series in
a business cycles framework is the identification of the type of trend that a time series
exhibits (Woitek 1998). This is a severe limitation of the available techniques, since
most filters in the literature exhibit the desirable properties only with pre-specified
trend forms. In a seminal paper, Pedersen (2001) created a measure in order to quan-
tify the level of distortion of the most popular filters. According to the results, HP
and BK seem to have a quite good but sub-optimum performance, under controlled
circumstances (see alsoMise et al. 2005). Thus, it is apparent that in order to judge the
robustness of the results of a filtering process, so far, more than one filtering techniques
should be applied in a time series (Canova 1998). This increases our computational
costs. On the other hand, our proposed approach allows researchers to overcome this
problem since it allows, by design, the dataset itself to fit the model and not vice versa,
as most filtering techniques suggest.
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Also, it is widely accepted that business cycles in Economics have non-linear char-
acteristics. As a result, relevant non-linear specifications have to be employed in order
to achieve a globally credible form independent of the series in use. Thus far, for
the extraction of the cyclical component of a time series, researchers assume that the
trend specification of the time series follows a certain pattern, i.e. linear, exponential
etc. Nevertheless, this is an ad-hoc assumption, which totally ignores the inherent
characteristics of the time series at hand. To this end, in this paper, we formally
establish a novel methodological framework that takes into consideration the inherent
non-linearities of the time series. In this context, our approach that is intrinsically non-
linear, should be considered as an appropriate alternative that is not affected by the
potential nonlinearities of the dataset at hand, the so-called “neglected non-linearities”
problem (Lee et al. 1993). See also Kiani (2009a, b).

Moreover, we have demonstrated formally that the cycles produced by the proposed
technique have amean value equal to zero. In otherwords, business cycles as deviations
from trend are disturbances from a growth path (positive or negative) that lead, sooner
or later, to a return to the growth path. The economic intuition of this finding is that
growth occurs despite a business cycle process and as a result these cyclical fluctuations
are no barrier to economic growth (positive or negative).

Next, using relevant DGPs, we have demonstrated that our approach is superior to
HP and BK regarding the generated distortionary effects and the ability to operate in
various frequencies, including changes in volatility, amplitudes and phase. Also, while
keeping the structure of the proposed approach relatively simple, it is nevertheless
capable of addressing very satisfactorily the case of stochastic trend, in the sense that
the generated distortionary effects in the near unit root case are minimal and, by all
means, considerably fewer than those generated by HP and BK. In this context, a
relevant procedure for the econometric estimation of the NNF has been developed as
a simple seven-step algorithm which relies on standard techniques and all relevant
measures can be computed routinely.

Finally, the NNF was applied to real GDP time series for EU15 countries. An
empirical finding of great interest is the existence of a core-periphery distinction in
Europe which is consistent with the findings by other researchers. More precisely, five
(5) clusters were formed based on the powerful fuzzy clustering technique.

The empirical results, which are consistent with the rigorous theoretical framework
developed in this work, even in its strictest form, suggest that the proposed globally
flexible Neural Network Filter (NNF) is a useful approach for expanding conventional
filter theory.
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Appendix

Definition 1 (Trend set) Consider gt j , t ∈ T ⊆ R
+, j ∈ J ⊆ R representing the trend

of a time series xt j ∀ j ∈ J , such that gt j ∈ R, ∀ j ∈ J . Without loss of generality,
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let
⋃

t j
gt j = {gt j : gt j is the trend of xt j ∀ j ∈ J } ⊆ R be the trend set which is

assumed to be closed and bounded.

Definition 2 (Time series as random variable) A time series model for the observed
data xt j , j ∈ J is a specification of the joint distributions, or only the means and
covariances, of a sequence of randomvariables {Xt }t∈T ofwhich {xt j }t∈T is postulated
to be a realization.

Definition 3 (Time series set) Consider xt j , j ∈ J an arbitrary macroeconomic time
series, such that xt j ∈ R∀t ∈ T ⊆ R

+. Without loss of generality, let
⋃

j∈J xt j ⊆ R

be the time series set.

Theorem 2

Proof FromLemma1 the trend set is compact. FromLemma2 any function of the form
: F (t) ≡ d+ct+∑N

i=1 ai ϕ (bit) ,ϕi, bi, d ∈ R, c ∈ R−{0}} is non-constant, bounded
and continuous. Then, from Theorem 1, the family: F = {F (t) ∈ C

(⋃
j∈J gti

)
:

F (t) ≡ d + ct + ∑N
i=1 aiϕ (bit) ,ϕi, bi, d, c ∈ R} is dense in C

(⋃
j∈J gt j

)
. ��

Theorem 3 (Linear time trend as degenerate form of NNF)

Proof Let xti , i ∈ I be a time series and let m̄ ∈ {1, ..M}. Then, ∃βm̄i ∈ R
m̄ ,

am̄i ∈ R
m̄+, a0m̄i ∈ R and δm̄i ∈ R such that the trend of the macroeconomic time

series be given by the following expression:

gt = a0m̄i + δm̄i t +
∑m̄

k=1
αkϕ

(
βk t

)
, ∀i ∈ I

Now, since I is a compact subset of R then it is closed and bounded and there
exists i0 ∈ I such that βm̄i0

= max{βm̄i ∈ R
m̄}. For, this βm̄i0

we have that δm̄i0
=

max
{
δm̄i , m̄i ∈ {1, . . . M}}, while the trend of thismacroeconomic time series is given

by the expression:

gt = a0 + δm̄i0
t +

∑m̄i0

k=1
αkϕ

(
βk t

)
, i0 ∈ I

But, since: βm̄i0
= max

{
βm̄i , βm̄i ∈ R

m̄
}
, then:

∑m̄i0
k=1 αkϕ

(
βk t

) = ∑m̄i0
k=1 αk .

In view of ϕ being increasing monotonic and ϕ : R → [0, 1], we have that: gt =
a0 + δm̄i0

t + ∑m̄i0
k=1 αk .

Hence, the trend approximation is equal to the linear trend, i.e. gt = γ + δt , where:

γ = a0 + ∑m̄i0
k=1 αk . ��

Theorem 4 (Mean value of the cycle is zero)

Proof Let xt j , j ∈ J be a time series whose cyclical component is given by the
expression:

ct j = xt j − gt j ,∀ j ∈ J and t ∈ T .
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Let {pt j } j∈J be the respective probability measure assigned on each cyclical times
series ct j ∀t ∈ T .

Now, provided that:
∑

t∈T(xtj − gtj), ptj converges absolutely, i.e.
∑

t∈T |(xt j −
gt j ), pt j | < ∞, the expected value of our cyclical component is given by the following
expression:

E
(
ct j

) = E
(
(xt j − gt j ,)

) =
∑

t∈T
(xt j − gt j ,)pt j ∀ j ∈ J, t ∈ T and pt j ∈ [0, 1]

(29)

But, since
⋃

ti gti is a dense subset on
⋃

t j
xt j , then by the definition of density

we have that ∀ε > 0 and ∀xt j , j ∈ J there exists gti , i ∈ I such that
∣∣xt j − gti

∣∣ <

ε∀ j ∈ J and ∀i ∈ I . Thus, ∀
{
ptj

}

j∈J in a relevant probability space, we have that:

|(xt j − gt j )pt j | < εpt j < ε ∀ j ∈ J and ∀pt j ∈ [0, 1] .

But,without loss of generality, for εt = 1− 1
2t ,∀t ∈ T wehave that:

∑
t∈T (1− 1

2t ) <

∞.
Hence:

∑
t∈T

∣∣(xt j − gt j ,)pt j

∣∣ < ∞ (A.14) and, therefore, Eq. (29) defines the
expected value of the cyclical component of the time series.

Thus:
(
ct j

) = E
(
(xt j − gt j ,)

) =
∑

t∈T
(xt j − gt j ,)pt j ∀ j ∈ J, t ∈ T (30)

But:
∑

t∈T (xt j − gt j ,)pt j = (x1 j − g1 j ,)p1 j + · · · + (xt j − gt j ,)pt j + . . . and
(x1 j − g1 j ,)p1 j + · · · + (xt j − gt j ,)pt j < ε1 p1 j + · · · + εT pTj + . . ., ∀ j ∈ J ,
t ∈ T because of the density of

⋃
ti gti on

⋃
t j

xt j which implies:
∣∣xt j − gti

∣∣ < ε∀ j ∈
J and ∀i ∈ I .

However:
∣∣xt j − gti

∣∣ < εt ⇔ −εt < xt j − gti < εt , ∀ j ∈ J ,∀t ∈ T and ∀i ∈ I

−
∑

t∈T
εt pt j ≤

∑
t∈T

(
xt j − gt j

)
pt j ≤

∑
t∈T

εt pt j ∀ j ∈ J and ∀pt j ∈ [0, 1]

Now, without loss of generality, for εt = 1 − 1
2t ,∀t ∈ T we have that:

−
∑

t∈T

(
1 − 1

2t

)
pt j ≤

∑
t∈T

(
xt j − gt j

)
pt j

≤
∑

t∈T

(
1 − 1

2t

)
pt j ∀ j ∈ J and ∀pt j ∈ [0, 1] (31)

But, given that 1 − 1
2t > 0 and pt j ∈ [0, 1], we have that:

∑
t∈T

(
1 − 1

2t

)
pt j ≤

∑
t∈T

(
1 − 1

2t

) ∑
t∈T

pt j

=
∑

t∈T

(
1 − 1

2t

)
→ 0 since :

∑
t∈T

pt j = 1 (32)

Similarly: −∑
t∈T

(
1 − 1

2t

)
pt j → 0
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Hence, given that: −∑
t∈T εt pt j ≤ ∑

t∈T

(
xt j − gt j

)
pt j ≤ ∑

t∈T εt pt j ∀ j ∈ J ,

∀pt j ∈ [0, 1] and that: −∑
t∈T

(
1 − 1

2t

)
pt j → 0 and

∑
t∈T

(
1 − 1

2t

)
ptk → 0 we

get:

E
(
ct j

) = 0,∀ j ∈ J, t ∈ T and ∀pt j ∈ [0, 1] (33)

��
Theorem 5 (Mean value of the NNF cycle is zero)

Proof Based on Theorem 2, F = {F (t) ∈ C (X) : F (t) ≡ d + ct +∑N
i=1 aiϕ (βi t) , αi , βi , d, c ∈ R} is dense in

⋃
ti gti . Hence, in view of Theorem

4, we have that:
(
ct j

) = 0∀ j ∈ J . ��
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