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Abstract

Over the past decades, Magnetic Resonance Imaging (MRI) has taken a leading role in the
study of human body and it is widely used in clinical diagnosis. /n vivo and ex vivo Magnetic
Resonance Spectroscopic (MRS) techniques can additionally provide valuable metabolic
information as compared to MRI and are gaining more clinical interest. The analysis of MRS
data is a complex procedure and requires several preprocessing steps aiming to improve the
quality of the data and to extract the most relevant features before any classification algorithm
can be successfully applied.

In this thesis a new approach to quantify magnetic resonance spectroscopic imaging (MRSI)
data and therefore to obtain improved metabolite estimates is proposed. Then, an important
part is focusing on improving the diagnosis of glial brain tumors which are characterized by
an extensive heterogeneity since various intratumoral histopathological properties such as
viable tumor cells, necrotic tissue and infiltration with normal tissue can be identified in the
tumor region. For a reliable diagnosis of the glial tumor type and grade this thesis proposes a
first screening between these intratumoral histopathological properties. To this aim, cluster
analysis and several blind source separation methods are tested on ex vivo HR-MAS and in
vivo MRSI data. Moreover, several approaches to fuse multimodal information coming from
MRI, MRSI and HR-MAS for the classification of glial brain tumors are considered.

MRS techniques are nowadays successfully considered for the analysis of body fluids. A pilot
research to study the amniotic fluid from fetuses with congenital diaphragmatic hernia using
high resolution MRS spectroscopy is proposed.
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Chapter 1

Introduction

This chapter presents the aim of the thesis and introduces the general concepts of magnetic
resonance (MR) with the focus on different MR modalities that will be considered for the
medical applications presented in this thesis, i.e., brain tumors diagnosis and pregnancy
follow up. Section 1.2 is a theoretical overview of MR principle, in vivo MR modalities, such
as MR imaging, MR spectroscopy, MR spectroscopic imaging, and ex vivo MR techniques.
Section 1.3 provides medical background about brain tumors and abnormal pregnancies such
as congenital diaphragmatic hernia and underlines the potential of MR techniques for the
diagnosis of these clinical conditions. An overview of the organization of the thesis and the
personal contributions are summarized in Sections 1.4 and 1.5, respectively.

1.1 Goals of the thesis

The aim of the research presented in this thesis is to improve and facilitate the clinical
application of nuclear magnetic resonance (NMR) techniques by the development
of advanced methods for the interpretation and preprocessing of magnetic resonance (MR)
data as well as for developing advanced classifiers with adaptive learning abilities combining
segmentation, signal processing and pattern recognition. The study is performed in close
collaboration with clinical centers from Belgium and abroad. The direct application in
diagnosis, prognosis and treatment selection of adult’s brain tumor is foreseen. Another
clinical application is the prediction of certain complicated pregnancies using NMR
techniques.

This thesis approaches mainly two topics in the (pre)processing of NMR data: the
quantification and classification. These topics are closely related since for obtaining reliable
classifiers, firstly relevant information needs to be extracted from the acquired data.
Quantification represents the process of deriving physically meaningful parameter estimates
from the given data. In this thesis, the focus is mainly on the quantification of magnetic
resonance spectroscopic imaging (MRSI) data for which retrieving accurate estimates of the
most relevant metabolite concentrations remains a challenging problem due to low spectral
quality as a result of the spatial/spectral trade-off. For improving the accuracy of
quantification of MRSI data the available spatial information is exploited.



The second main goal of the thesis is the development of classifiers that can assist clinicians
for an improved diagnosis and prognosis of brain tumors. This part of the thesis focuses on
glial brain tumors which are characterized by a very high heterogeneity. One purpose is to
identify histopathological tissue properties using unsupervised classification methods such as
cluster analysis and blind source separation (BSS). A first screening of these tumors at a
microscale level can further help in an improved diagnosis and prognosis of the tumor type
and grade. Moreover, using BSS methods the contribution (abundance) of each tumor tissue
to the profile of the spectra is predicted. Another important aspect which is studied is the
combination of different sources of NMR data, by fusing in vivo MRSI, ex vivo high
resolution magic angle spinning (HR-MAS) spectroscopic information and magnetic
resonance imaging (MRI) for improved diagnosis. For the visualization of the obtained
classification results nosologic images are considered.

Furthermore, automatic feature reduction methods in combination with automated
classification techniques are considered for analyzing whether the metabolic information
contained in the amniotic fluid (AF) coming from fetuses presenting congenital diaphragmatic
hernia (CDH) reflects the status of the disease.

1.2 Magnetic resonance

NMR technique is based on the quantum-physical property of certain nuclei called spin. This
concept was first introduced by Wolfgang Pauli in 1924. Then, in 1938 NMR was first
described and measured in molecular beams by Isidor Rabi. In 1946, Felix Bloch and Edward
Mills Purcell extended the technique to liquids and solids. They noticed that some magnetic
nuclei, such as 'H and *'P, when placed in a magnetic field of strength specific to the identity
of the nuclei, can absorb radio frequency (RF) energy. When this absorption occurs, the
nucleus is referred to as being in resonance. Different atomic nuclei within a molecule
resonate at different RFs for the same magnetic field strength. This enables the measurement
of the chemical and structural information that characterizes a certain molecule.

1.2.1 Basic concepts of magnetic resonance

An NMR experiment usually involves:

A. Aspin
Nucleons (protons and neutrons composing the atomic nucleus) have the quantum property of
spin. As quantum mechanics describes, the spin is characterized by a nuclear spin quantum
number, /, which depends on the number of protons and neutrons. If the number of both
protons and neutrons is even then there is no overall spin and /=0. If the number of neutrons
plus the number of protons is odd, then the nucleus has a half-integer spin (i.e. I = 1/2, 3/2,



5/2). 1f the number of neutrons and the number of protons are both odd, then the nucleus has
an integer spin (i.e. I = 1, 2, 3).
The non-zero spin can be represented as a rotational motion of the particle around its own

axis, see Figure 1.1.a. This motion generates a small magnetic field and therefore the nucleus
possesses a magnetic moment, £ , which is proportional to its spin, I:

wh
= 1.1
= (1.1

where ¥ is the gyromagnetic ratio constant and has a different value for each nucleus. 4 is

Planck’s constant.

B. A static external field B,
In the absence of an external magnetic field the individual spins have random orientations,
summing up to a null overall magnetization, see Figure 1.1.a. On the other hand, if an external
magnetic field, By, is applied, then the individual spins align with B, and therefore enter an
angular momentum state. The nuclei will thus rotate about their own axis and precess about
the axis of the magnetic field B, with a frequency f; (called the Larmor frequency) which is a
function of the strength of the magnetic field and the gyromagnetic ratio

fo i) (1.2)
2

For any given nucleus, the total number of angular momentum states, m, also called magnetic
quantum number, is 2/ + . Thus, an / =1/2 nucleus can only give rise to two distinct angular
momentum states, an /=7 nucleus to three and so on.

Our discussion will be further limited to / = 1/2 nuclei. They are of particular interest for
NMR since they can take two spin states and therefore their analysis is fairly straightforward.
Nuclei of /=1/2, when placed in an external magnetic field B, will align along or against By,
see Figure 1.1.b. When the nuclei align along the external field, B, their magnetic moment m
= +1/2 and the nuclei are described as being in low energy spin state. An alignment opposed
to the field (m = -1/2) is less stable as it matches with a higher energy spin state.



e
:”_dpz e

0
Figure 1.1 Atomic nuclei spinning around their own axis and having random orientations in

b.

the absence of an external magnetic field, see a. In b. spinning nuclei align up parallel or
opposed to the applied field, B,

The energy corresponding to each possible state m is calculated as:

E, =mB, M (1.3)
2

As the energy is proportional to the strength of the magnitude of the external field, the two
spin states have the same energy when the external field is zero, but differ as the field
increases, see Figure 1.2.

Figure 1.2 Magnetic field strength effect on NMR energies.

Thus, at a field equal to B, there will be a difference in energy between the low and high
energy level. The energy difference, also called transition energy, is computed as:



h
AE=E_ ), —E,,= ?sz— (1.4
V1

In relation to (1.1) AE becomes:

g
E

(1.5)

This means that AE is increased for an increased magnetic field, B,, and for relatively large
gyromagnetic ratio.

C. An oscillating magnetic field

It is possible to make a nucleus flip from the more stable energy spin state to the less stable
one, by supplying exactly the right amount of energy. To induce transitions between these
states an oscillating magnetic field, B, is applied in a plane perpendicular to the direction of
the static external field By. Since the B, field is much stronger than the B, field, by many
orders of magnitude, if the B, field was static, it would have a negligible influence onto the
spins. However, the B, field is not static but rotates about the axis of B, with a frequency that
is very similar to the precession frequency of the spins, see Eq. 1.2. The radio frequency (RF)
of the oscillating field matches the energy difference between the nuclear spin levels in a
constant magnetic field of appropriate strength. During RF pulses, spins which are exactly on
resonance (e.g., whose precession frequency is equal to the precession frequency of the B,
field) react to the B, field. They will start to precess about the axis of the B, field until the B,
field is turned off again, see Figure 1.3.

Figure 1.3 Precession of a nuclear moment in a B, field (left). During the RF pulse the
nucleus precesses about the axis of B (right).



NMR explores the property of some nuclei to absorb this RF energy and therefore to enter the
state of being in resonance. The NMR signal originates from the process of energy absorption
when making a transition from the lower energy state to the higher energy state, and energy
emission when making a transition from the higher energy state to the lower energy state. The
signal intensity is thus proportional to the amount of energy absorbed and emitted by the
nuclei and therefore depends also on the population difference between the states.

The relative population of the states can be calculated from the Boltzmann distribution:

“1/2 AE
N %\]H/Z =e Vir (1.6)

where k is the Boltzman constant and T the temperature.

The number of spins in the low energy level N 2 slightly larger than the number of

spins in the high energy level N -2 . This causes a net magnetic field or a net magnetization
in the direction of By. Still, the energy difference in NMR experiments is very small and
therefore the signal is weak, thus a low signal-to-noise ratio (SNR) is registered. To overcome
this problem, the RF pulse is usually repeated several times to allow the signals to be
averaged and thus better identified from the background noise.

Important parameters in NMR

Except the three main elements which define an NMR experiment (the spin, the external
magnetic field and the oscillating magnetic field), for a successful NMR signal acquisition,
one has to consider other important parameters:

= the type of nucleus to be considered in an NMR experiment. From all nuclei
that possess a spin, the most commonly used in NMR are presented in Table
1.1. They are chosen due to their high gyromagnetic ratio and consequently
stronger magnetic moment, but also due to their abundance in the human body.

Table 1.1 The most common nuclei considered in NMR experiments

Human body elemental
Nucleus /4 k
abundance in %
'H 2.675 10
e 0.673 18
P 2517 0.01
N -0.271 3

3ip 1.083 1.2



= the temperature, 7, of the sample. As shown in Eq. 1.6, a higher intensity is
obtained for higher B, and smaller 7. During ex vivo HR-MAS experiments the
samples are usually kept at 4 “C. Yet, for in vivo experiments, the temperature
is fixed (body temperature) and therefore it does not allow the manipulation of
T for improving the measurements.

= the echo time (7E). It represents the time in milliseconds between the
application of the 90° pulse and the peak of the echo signal in spin echo and
inversion recovery pulse sequences.

= the repetition time (7R). TR is the amount of time between successive pulse
sequences.

= the pulse sequence. The most common pulse sequences considered during
MRS experiments are Point-RESolved Spectroscopy (PRESS) which uses a
90> excitation and two 180° refocusing pulses and STimulated Echo
Acquisition Mode (STEAM) when all three pulses are 90° excitation pulses.

While the parameters above can be chosen as part of the NMR acquisition protocol, the
following parameters characterize the effect of the experiment:

= the relaxation time 7/, also called the spin-lattice relaxation time, is the time
constant characterizing the exponential return to equilibrium of the
longitudinal magnetization (i.e., component of the magnetization vector in the
direction of B)) after the RF pulse.

= the time constant 7, which describes the exponential return to equilibrium of
the transverse magnetization (i.e., component of the magnetization vector in
the plane perpendicular to By), and is called the spin-spin relaxation time.

How exactly these parameters influence an NMR experiment will be detailed in the following
sections.

1.2.2 In vivo nuclear magnetic resonance

Nowadays, NMR represents a sophisticated and powerful analytical tool that has found a
variety of applications in many disciplines of scientific research, medicine, as well as in
various industries. NMR is in particular commonly considered in medical sciences since it is
extremely versatile and allows for a whole family of modalities that record different
anatomical and physiological properties that can help in the diagnosis and prognosis of
various clinical states. With conventional magnetic resonance imaging (MRI) techniques,
which focus on anatomical abnormalities, we can essentially assess the anatomy of the tissue
under investigation. More functional magnetic resonance (MR) methods are currently being



explored such as MR of vessel perfusion, of water diffusion and of metabolite distribution. In
contrast to the first two, which rely on the measurement of the signal intensity of water, the
latter is able to assess abnormal signal levels of certain metabolites in, e.g., brain tumors. This
technique is called MR spectroscopy (MRS) and, if performed in a multi-voxel approach,
magnetic resonance spectroscopic imaging (MRSI). The latter allows the spatial mapping of
metabolites and is more and more used in the clinical MR community. All of the above
mentioned in vivo NMR techniques are non-invasive.

1.2.3 Magnetic resonance imaging

The most common NMR application is MRI. Unlike other clinical imaging modalities, such
as for example Computer Tomography (CT) or Positron Emission Tomography (PET), which
make use of potentially harmful radiations (X-rays), MRI has the advantage that the images
are acquired completely non-invasively without causing any radiation risk to the patient. In
addition it provides very good contrast between the different soft tissues of the body and
therefore is very useful in studying the brain, the heart, muscles and cancers.

MRI is based on the detection of water signals. The resonance signals from the protons (‘H)
of water molecules and their spatial origin are recorded. The basic principles of NMR, which
are presented in Section 1.1.1, are applied to generate in vivo images of the tissues under
investigation. In addition gradients corresponding to a linear variation in the magnetic field as
a function of distance need to be applied to the external magnetic field B,. If no gradient is
applied, we would acquire a signal that corresponds to the global response of all spins and no
information about their spatial distribution would be available.

By applying different 7E and TR, which are basic parameters of an MRI image acquisition,
MRI images of different contrast can be obtained. On a T,-weighted MRI (longer TE and TR),
tissues containing water and/or fluid are bright and fat-containing tissues appears dark. With
T,-weighted images (short 7R and TE) mostly the reverse of a 7,-weighted MRI is obtained.
Proton density (PD) images, based on a long TR and a short TE, reveal changes coming from
differences in the amount of available spins (‘H nuclei in water). In addition, contrast agents,
such as Gadolinium (Gd), can be injected intravenously to enhance tissue characteristics on
the obtained MRI image.

Beyond these conventional MR sequences, more advanced MR modalities can be used to
obtain specialized MRI scans. By considering an additional RF pulse and additional
manipulation of the magnetic gradients, a 7,-weighted sequence can be converted to a Fluid
Attenuated Inversion Recovery (FLAIR) sequence. On FLAIR images the signal from fluids
appears dark, but edema tissue remains bright. Thus they are often used in brain imaging to
bring out the periventricular hyperintense lesions, such as multiple sclerosis plaques. By
measuring the diffusion of water molecules in biological tissues we can obtain diffusion MRI.
Two known applications for diffusion MRI are diffusion-weighted imaging (DWI) which is
highly sensitive to the changes occurring in the lesion and diffusion tensor
imaging (DTI) which is very helpful for fiber directions detection and connectivity of



different regions in the brain inspection. Functional MRI (fMRI) measures signal changes in
the brain that occur due to neural activity. For example, the BOLD (blood-oxygenation-level
dependent) effect is used to visualize brain activity. Although the specialized MRI scans are
very interesting for research, they are nowadays not commonly used for clinical purposes. In
Figure 1.4, several MRI images of different contrast as well as specialized MRI scans are
acquired for a patient diagnosed with glioblastoma.

Figure 1.4: Brain MRI data. From top-lefi to bottom-right: T;-weighted MRI without
contrast, Tr-weighted MRI, T;-weighted MRI with contrast, FLAIR, DWI with sequence b-
value of 0 mm/s?, DWI with sequence b-value of 1000 mm/s>.

1.2.4 Magnetic resonance spectroscopy

Another very interesting NMR application is MRS. Compared to conventional MRI, which
essentially assesses anatomy, MRS reveals biochemical information on the tissue under
investigation by exhibiting peaks at frequencies specific to the molecular composition of the
tissue under investigation. It measures the levels of different metabolites in the tissue, which
appear in the MR signal as a spectrum of resonances that correspond to different metabolites.
The technology can thus provide relevant information on cancer metabolism, as well as on the
biochemical composition of body fluids.

What makes it possible to separate between the resonances coming from different metabolites
is the shielding effect also called chemical shift. When an atom is placed in a magnetic field,
its electrons circulate about the direction of the applied magnetic field creating a small
magnetic field which opposes the externally applied field, creating the chemical shift effect.
The effective magnetic field at the nucleus of the same atom, but belonging to a different
molecule, is slightly different, by a fraction 0 , and is described by:
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By =B, -(1-0) (1.7)

where O is called the shielding constant. Its value is specific to each atom in a molecule and
depends on the electrical environment of a nucleus. The chemical shift effect is seen as if the
nuclei’s Larmor frequency is shifted relative to the reference frequency corresponding to the
static field By (i.e., the spectrometer frequency):

(1-0)-B
fef'=—}/( 22) t (1.8)

This shift in frequency makes the nuclei from a different chemical environment (molecules) to
emit signals with different frequencies. The chemical shift can be expressed in Hz or parts-
per-million (ppm). The latter version is commonly preferred because it is independent from
the spectrometer frequency. If a metabolite resonates at a certain ppm value for a
spectrometer frequency of 63.8 MHz (corresponding to a 1.5 Tesla scanner), it will resonate at
the same ppm-value for a spectrometer frequency of 500 MHz. The ppm value of a resonance
M is defined by:

10°
pomy =Lt » (1.9)

S

where f, is the resonance frequency in Hz and f; is the spectrometer frequency in Hz. ppm,.,

is the value of the reference resonance. Usually the resonance of water at 4.7 ppm is chosen as
reference.

The MRS signal is acquired as a time domain signal and is commonly referred to as free
induction decay (FID) signal since it corresponds to a sum of complex-damped exponentially
decaying sinusoids. For the ease of visualization and sometimes interpretation the time
domain signal can be Fourier transformed into a complex frequency domain signal commonly
called spectrum, see Figure 1.5.
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Figure 1.5 FID signal (left), the real and imaginary parts of the Fourier transformed signal
(middle) and the magnitude spectrum (vight).

Each metabolite has a specific spectrum, see Figure 1.6, and the MRS spectrum coming from
the tissue under investigation will thus be a linear combination of spectra from individual
metabolites present in the tissue. The intensity of each metabolite signal is proportional to the
number of nuclei that contribute to it and this allows one to quantify the concentration of each
metabolite in the spectra.
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Figure 1.6 Set of metabolite profiles measured in vitro at 3T, PRESS sequence, TE = 35ms.
The magnitude spectra are visualized.
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The metabolic resolution of the MRS spectra can be influenced by the acquisition parameters
such as the TE value. Short TEs (e.g., 30 ms) provide more metabolic information than long
TEs (e.g., 135 ms), see Figure 1.7, but a low SNR. To improve the SNR, usually repeated
measurements are consecutively performed and the final signal is the average of all measured
signals. As mentioned in Section 1.1.1, the static magnetic field also has a high influence on
the signal, i.e., for high magnetic field the spectral resolution is increased.
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Figure 1.7 '"H MR spectra at, from top to bottom, short echo time (TE=35 ms) and long echo
time (TE=272 ms). Figure adapted from Devos, 2005.

1.2.5 Magnetic resonance spectroscopic imaging

When MRS is performed as a multi-voxel approach, MRSI images are obtained, see Figure
1.8. The technique, also called Chemical Shift Imaging (CSI) or multi-voxel spectroscopy is a
combination of both MRI and MRS, since it allows the spatial mapping of metabolites. This
makes it more and more popular in the clinical MR community.

The MRSI signals are acquired in a two dimensional or three dimensional matrix with, for
example, dimensions 16x16(x16) or 32x32(x32). To get enough signal intensity from the
metabolites, the MRSI voxel size is much bigger than those used in MRI reaching usually
lem x lem (x 1em).
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Figure 1.8 Screenshot from the 3T Siemens scanner for in vivo brain MRSI data acquired

using a semi-laser, 30ms TE sequence. The data are provided by Radboud University Medical
Center Nijmegen (RUMCN).

1.2.6 Ex vivo nuclear magnetic resonance

Ex vivo high resolution NMR techniques, although invasive, are of high clinical interest in the
study of body tissue and fluids since they provide an accurate biochemical profile of human
tissue and therefore are very helpful for the assignment of well-resolved spectra of cellular
metabolites. When performing in vivo MRS spectroscopy one may be confronted with poor
spectral resolution and overlapping peaks due to By inhomogeneity, dipolar coupling, T,
relaxation and low field strength. Moreover in vivo NMR experiments at very high field
strengths are not possible due to technical limitation and for patient safety. When the NMR
experiment is performed ex vivo higher field strength can be used, which yields higher
spectral resolution, better spectral quality and therefore many of the limitations of in vivo
MRS are overcome. Compared to in vivo MRS, ex vivo high resolution NMR techniques
allow the identification of a large number of metabolites, see Figure 1.9.
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Figure 1.9 Comparison between an in vivo MRSI spectrum (top) and an ex vivo spectrum
(bottom) for glioblastoma brain tissue in the area of interest [0.25, 4.5] ppm. The spectra
were obtained by computing the mean over several cases.

Ex vivo HR-MAS

HR-MAS is an ex vivo NMR technique that provides spectra characterized by narrow line
widths and high SNR ratios. According to the available literature, it allows the most detailed
assignment of biochemical compounds obtained in intact human tissue, in particular in brain
tumor tissue. Since a good correlation between ex vivo HR-MAS and in vivo MRS has been
reported (Barton et al., 1999; Opstad et al., 2010), the HR-MAS technique is often considered
for improving the interpretation of the metabolic biomarkers that are visible with in vivo
NMR. Additionally, with ex vivo HR-MAS the tissue integrity is mainly conserved (Martinez-
Bisbal et al., 2010) and this is an advantage since it allows one to perform, on the same tissue
sample, multimodal studies including subsequent genomic, proteomic or histopathological
analyses and, therefore, to obtain a direct comparison between all these techniques.

For acquiring HR-MAS spectra, the NMR principles described in Section 1.1.1 are still valid.
Specific for this technique is that the sample is placed in a small rotor filled in with a solvent,
e.g., D,0O solution. The rotor is then spun at high angular velocities, of a few kHz, and at a
certain angle, called magic angle, 8,,, with respect to the direction of the static magnetic field,
B, see Figure 1.10.
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Figure 1.10 HR-MAS experiment. The sample placed in the scanner rotor is rotating with

1 o
high frequency inside the main magnetic field (By) at magic angle 6,, = arccos—= = 54.7".

5

1.3 Nuclear magnetic resonance for clinical
applications

NMR techniques have various applications in many medical fields, chemistry, as well as in
various industries. In the medical field NMR imaging and spectroscopy are often considered
for the diagnosis, prognosis and/or follow up of cancer in different organs (e.g. breast,
prostate) and brain (Mueller-Lisse and Scherr, 2007; Callot et al., 2008; Dorrius et al., 2011),
pediatric diseases (Dezortova and Hajek, 2008), liver and muscle diseases (Machann et al.,
2008) brain diseases (e.g. ischemia, multiple sclerosis, Alzheimer’s disease, epilepsy
(Frederick et al., 2004; Mader et., 2008; Hajek et al., 2008)) and cardiovascular diseases (den
Hollander et at., 2005). Alterations in metabolite concentrations were reported in fluids, such
as amniotic fluid (AF), and correlate with the health of the fetus and caring mother (Graca et
al., 2007; 2008; 2009). This thesis mainly focuses on the use of NMR techniques in the study
of brain tumors and for identifying abnormal pregnancies by AF spectroscopic analysis.

1.3.1 Brain tumors and nuclear magnetic resonance

Brain tumors represent an important challenge in oncology because of their relative high
mortality. The World Health Organization (WHO) classification discriminates between
different brain tumor types, subtypes and different grades of malignancy (Louis et al., 2007).
Additionally, brain tumors are known for their extensive heterogeneity both at the level of
tumor type and grade, as well as at a microscale level. These characteristics pose serious
difficulties in the diagnosis, prognosis and treatment of brain tumors. Consequently, many
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researchers are now focusing on understanding this disease from the metabolomic, genomic
and proteomic points of view. NMR techniques can thus play an important role in the
diagnosis and prognosis of brain tumors. /n vivo and ex vivo high-resolution MRS techniques
are especially interesting since they offer a clinically feasible metabolic assessment, providing
significant biochemical information on the molecules of the brain tissue under investigation.

About brain tumors

A brain tumor is an abnormal growth of cells within the brain or the central spinal canal. It is
the effect of an abnormal and uncontrolled cell division, either in the brain itself, in the cranial
nerves, in the brain envelopes, skull, pituitary and pineal gland.

There are over 120 different types of brain tumors, which make effective treatment
complicated. They can be, based on their origin, primary or secondary. The latter refers to
those tumors that originate from other organs and spread in the brain and are known as
metastatic brain tumors. By behavior brain tumors can be cancerous (malignant) or non-
cancerous (benign). Based on which cells are affected we can distinguish meningiomas,
which appear in the meninges, the tissue membrane that surrounds the brain and separate
the skull from the brain. Brain tumors of the glial cells are called glioma or glial brain tumors.
The grade of a tumor reflects the degree of malignancy. Grading is based on how abnormal
the cancer cells are and how quickly the tumor is likely to grow and spread. Low grade
tumors, such as Grade I and Grade II tumors, grow slowly and rarely spread to other tissues.
Still some of these tumors may recur in a higher grade tumor. Grade III tumors are
characterized by a fast growth and are likely to spread into nearby normal tissue. Grade IV
tumors have a very fast growth and spread. Also, they mostly develop necrosis.

Although a recent statistical report at worldwide level is not publicly available, the CBTRUS
(Central Brain Tumor Registry of the United States) reported in 2005 43.800 new cases of
brain tumors (“Central Brain Tumor Registry of the United States, Primary Brain Tumors in
the United States, Statistical Report, 2005-2006). This accounted for 1.4 percent of all
cancers, 2.4 percent of all cancer deaths, and 20-25 percent of pediatric cancers. CBTRUS
also reports that males-females have a 0.67%-0.53% lifetime risk of being diagnosed with a
primary malignant brain/central nervous system tumor and 0.48%- 0.39% chance of dying
from a brain/central nervous system tumor. Additional statistics can be found from the
Statistics from Accelerate Brain Cancer Cure (ABC2) (http://www.abc2.org), the American
Cancer Society (http://www.cancer.org/) or the Brain Tumor Society and National Brain
Tumor Foundation (http://www.tbts.org/).

The most common primary tumors among adults are the gliomas. They are characterized by
an extensive heterogeneity reflected both at the level of the tumor type and grade, as well as at
histopathological level since they can present areas with mostly necrotic tissue (dead cells) or
a mixture of necrotic tissue and high cellular tumor tissue, see Figure 1.11. Moreover, glial
tumors are highly infiltrative. A large part of this thesis is dedicated to the classification of
glial brain tumors.
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Diagnosis

Generally there is no specific or singular clinical symptom or sign for any brain tumor and the
clinicians would typically not be confident to provide a diagnosis after a visual inspection of
the patient. Thus, technology plays a very important role in the diagnosis and prognosis of this
disease and especially imaging techniques are regularly used. Although the presence of an
abnormal tissue growth or the existence of a tumor can be easily detected with the available
imaging techniques, commonly the final diagnosisis confirmed by histological
examination of tumor tissue samples.

Histology

The histological examination involves a brain biopsy or open surgery and is performed by an
expert pathologist. It typically has three stages: interoperative examination of fresh tissue,
preliminary microscopic examination of prepared tissues, and follow up examination of
prepared tissues after immunohistochemical staining or genetic analysis. The histological
examination is performed for the correct prognosis of the brain tumor and therefore for
determining the appropriate treatment. Nowadays it is often considered the ground truth for
tumor typing and grading and for providing detailed information on the mixture of tissues
present in the sample under investigation, as well as the abundance of each tissue, see Figure
1.11. Histopathology has a few consistent drawbacks: it is invasive, time consuming and it
only provides local information from the tumor, while tumors are known to be heterogeneous
and infiltrative. Thus, there is a very high interest in considering alternative methods for the
diagnosis of brain tumor at a level of accuracy similar to histopathology. As a result, in vivo
NMR spectroscopy is gaining more and more importance in the diagnosis and prognosis of
brain tumors.

Treatment

The standard treatments for brain tumors include surgery, radiation therapy, chemotherapy, or
the combination of those. The main purpose of all these approaches is to remove or kill the
tumor cells, while keeping the normal tissue unaffected. More recently, a new therapy based
on Dendritic cell vaccination is tested (Ardon, 2011). For an effective treatment, it is very
important to have an accurate diagnosis both in tumor type and malignancy. A correct
detection of the contour of the tumor and the possible infiltrative areas is also essential before
starting the treatment.

During the surgery the surgeon attempts to remove the entire tumor. Often a partial removal is
performed in order not to damage vital brain tissue. In these circumstances the treatment is
followed by radiation therapy or chemotherapy. The radiation therapy uses high-powered rays
to selectively kill tumor cells. Radiation therapy may be given in two ways: external or
internal radiation. An external radiation therapy involves multiple treatments (10 to 30
treatments, depending on the type of tumor). Although for each treatment both healthy and
normal tissue is damaged, most of the normal cells can repair the damage within short time,
while the tumor tissue cannot. When radiotherapy is performed internally, also called
radiosurgery or the Gamma Knife, a computerized calculation is used to focus radiation at the
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site of the tumor while minimizing the radiation dose to the surrounding brain. The treatment
is given in just one session.

During the chemotherapy special drugs designed to kill tumor cells are administered to the
patients. Chemotherapy is usually given in more cycles and each treatment cycle is followed
by a recovery period. The drug administration is usually done orally or by injection into a
blood vessel or muscle. Intrathecal chemotherapy involving the injection of the drugs into the
cerebrospinal fluid is also possible. Recently a direct placement into the tumor cavity has been
considered. Chemotherapy is highly toxic and the many side effects and the uncertain
outcome of chemotherapy in brain tumors puts this treatment further down the line of
treatment options for medical teams.

Brain tumor diagnosis and prognosis using nuclear magnetic resonance

NMR techniques are widely used in the diagnosis and prognosis of brain tumors.
Conventional MRI techniques, such as PD, T, and T, weighted MRI, are routinely considered
by clinicians to assess the anatomy and location of the tumor, but they are often not able to
characterize the heterogeneous growth of cancer tissue and to identify tumor type or grade. To
address these issues, more functional MR methods are currently being explored such as MR
of vessel perfusion, of water diffusion and of metabolite distribution. The potential of ex vivo
and in vivo NMR spectroscopy has been lately extensively exploited in the separation between
normal brain and brain tumors (Rutter at al., 1995; Howe et al., 2003b), as well as for the
characterization of different degrees of malignancy (Negendank at al., 1996; McKnight et al.,
2004, 2007; Erb et al., 2008; Opstad et al., 2008a).

To avoid performing expensive histopathological examinations which, due to their invasive
nature, are with high risk for the patients, MRSI is currently more and more used in clinical
setting in conjunction with anatomical MRI to assess the presence, extent and type of brain
tumors.  Still, the accuracy of MRSI in differentiating and grading glial brain tumors is
limited by the significant variability of in vivo spectra as an effect of intra-tumoral
heterogeneity (Croitor Sava et al., 2011b). For example, in gliomas one can observe distinct
histopathological tissue properties, such as viable tumor cells, necrotic tissue or regions where
the tumor infiltrates normal brain.

Ex vivo high resolution NMR techniques are also often considered if one is interested in an
accurate biochemical profile of brain tissue, since they are very helpful for the assignment of
well-resolved spectra of cellular metabolites (Martinez-Bisbal et al., 2004). In this context, ex
vivo HR-MAS is seen as a promising complementary NMR technique with potential
applications in supporting tumor classification and diagnosis and a good correlation between
ex vivo HR-MAS and in vivo MRS has been reported (Opstad et. al., 2010). Thus, HR-MAS
can improve the interpretation of the metabolic biomarkers that are visible with in vivo NMR.
Additionally, with ex vivo HR-MAS the tissue integrity is not extremely damaged (Martinez-
Bisbal et al., 2010) and this is an advantage since it allows one to perform, on the same tissue
sample, multimodal studies including subsequent genomic, proteomic or histopathological
analyses and, therefore, to obtain a direct comparison between all these techniques. Moreover,
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HR-MAS can help in predicting the growth characteristic within different regions of a tumor
(McKnight et al., 2007), can help in differentiating between glial tumor grades (Erb et al.,
2008) and can successfully reveal the status of tumor microheterogeneity (Cheng et al., 2000;
Croitor Sava et al., 2011b; 201 1c.). To have complete information on the contour of the tumor
and the possible infiltrative areas, a first screening between the different intratumoral
histopathological tissue properties is essential and would greatly assist in a correct diagnosis
and prognosis of brain tumors.
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Figure 1.11 In a. T2 (left) and T1 Gd enhanced (right) MRI images asses the location and
size of the tumor and may provide information regarding the presence of necrotic tissue (see
T2 MRI). In b. histopathological examination reveals the tumor type and grade and the
contributions from different histopathological properties. Figure adapted from (Martinez-
Bisbal et al., 2008).

Metabolic biomarkers
An extensive list with the metabolites present in brain is described in (Govindaraju et al.,
2000). The metabolites that best discriminate between different types and grades of tumor, as
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well as between the different tumor tissue histopathological properties are visualized in Figure
1.12 and described bellow.

Figure 1.12 HR-MAS spectra from a patient with high grade glial brain tumor. The most
relevant metabolites in differentiating brain tumor are labeled. For Gly and Tau the area
where they appear is marked although they are present in very low concentration in this
tumor type and therefore not visible.

Alanine (Ala) has two main resonances at 1.47 ppm and at 3.77 ppm. The first one is clearly
detectable with ex vivo high resolution MRS techniques, but highly overlaps with the
resonances from lipids in low magnetic field in vivo MRS measurements. The resonance at
3.77ppm is not visible in in vivo experiments (Govindaraju et al., 2000). Ala is a biomarker
for brain tumors and increased levels have been observed in vivo in meningiomas (Manton et
al., 1995) and gliomas (Tong et al., 2004).

Creatine (Cr) presents two resonances at 3.03 and 3.9 ppm, respectively. It is a marker of the
energetic status of the tissue. Compared with normal brain, Cr is reduced in gliomas and is
almost absent in meningiomas, schwannomas and metastases, characteristics that are also
observed ex vivo. Still, the significance of the Cr decreases in terms of tumor metabolism is
not clear (Govindaraju et al., 2000). On the other hand, Cr is typically used as an internal
reference due to its stability. In (Tong et al., 2004) the ratio of NAA/Cr was reported as
significantly decreased compared to the same ratio in normal brain. The tCho/Cr ratios
decrease in high grade gliomas with the malignancy of the tumor due to the low cellularity of
high-grade gliomas, which contain a large amount of necrosis, while the ratio tCho/Cr may
solve some tumor classification problems in (Majos et al., 2004).

Total Choline (tCho) group includes Choline (Cho), Phosphorylcholine (PCho) and
Glycerophospholylcholine (GPCho) which resonate at about 3.22 ppm. tCho is associated
with brain tumor progression when present in high concentrations. tCho elevation is thought
to be due to accelerated membrane synthesis of rapidly dividing cancer cells. High tCho
concentration in tumor regions of metastasis and GBM were found in (Fan et al., 2004),
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reflecting increased cellularity during cancer cell growth (Usenius et al., 1994; Tedeschi,
1997; Podo, 1999). tCho group could not be used to differentiate low grade glioma from high
grade glioma (Tong, 2004), but can act as a biomarker in differentiating tissue type as
suggested in (Croitor Sava et al., 2011b) where it was shown that degradation in the tCho
concentrations relates with the tissue heterogeneity. Thus, tCho values are the highest in high
cellular tumor regions, relatively high in border regions, but are very low in necrosis.

Lipids (Lips) resonances at 0.9, 1.3 and 2.8 ppm are one of the most reliable markers of
tumor progression and in increased concentrations indicate necrosis, which is a
histopathological characterization of high grade tumors (Podo et al., 1999). Ex vivo studies
have further supported this, showing not only a correlation between NMR-visible mobile
lipids and percentage of necrosis (Andronesi et al., 2008), but also the presence of mobile
lipids in tumors with no necrosis (Tong et al., 2004), while (Cheng et al., 2000) reported that
concentrations of mobile lipids correlate linearly with the amount of necrosis. These findings
were confirmed in (Croitor Sava et al., 2011b) where it has been shown additionally that the
concentrations of lipids in border regions are almost negligible.

Lactate (Lac) presents a doublet at 1.33 ppm and a quartet resonating at 4.09 ppm. Since the
latter may overlap with the water resonance (Govindaraju et al., 2000) it is mostly not
considered in the metabolic analysis. For the in vivo experiments Lac is overlapping with the
resonances from lipids while when performing ex vivo measurements Lac is more sensitive to
external factors such as snap-freezing, the temperature conditions and the effect of organ
perfusion with deuterated saline solution. Lac is the end product of anaerobic glycolysis.
Although instable and hard to quantify, it is normally present in brain tissue at low
concentrations, while in tumors it is often prominent (Govindaraju et al., 2000). In (Cheng et
al., 2000) it is reported to correlate with the level of necrosis.

N-acetylaspartate (NAA), whose main resonance is a singlet signal at 2.01 ppm, is regarded
as a neuronal marker found only in neurons, and since most brain tumors are of non-neuronal
origin, NAA is reduced or absent in tumors (Peeling and Sutherland, 1992). Higher levels of
NAA are expected in the border region of the tumor with respect to the active tumor region.
NAA acts as a good biomarker for border tissue, but also for separating the necrosis from
border tissue and high cellular tissue (Croitor Sava et al., 2011b).

Glycine (Gly) at 3.56 ppm is visible both in ex vivo and in vivo experiments. For the latter
ones, the resonance may overlap with those of myo-inositol. Gly is a simple amino acid that
acts as an inhibitory neurotransmitter and antioxidant. It is distributed throughout the brain
and central nervous system. The concentrations of Gly are elevated in tumors (Govindaraju et
al., 2000).

Glutamine and Glutamate (GIn and Glu) are known to be excitatory neurotransmitters.
They present resonances at around 2.04, 2.35 and 3.74 ppm, the latter overlapping with a
multiplet of NAA in in vivo experiments (Govindaraju et al., 2000). Although they can be
quantified separately in ex vivo high resolution MRS spectra, they are often considered
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together in in vivo experiments, being referred as Glx. Glx levels are elevated in highly
malignant tumors and meningiomas (Manton et al., 1995).

Myo-inositol (Myo) resonates at 3.56 ppm. It is considered to be essential for cell growth,
acting as an osmolite and a storage form for glucose. Alterations in Myo levels were
associated with Alzheimer’s disease (Zhu et al., 2006) and brain injury (Ross et al., 1998). It
is reported absent or low in non-glial tumor like meningioma and in high level in low grade
gliomas and astrocytomas (Govindaraju et al., 2000).

Taurine (Tau) resonates at 3.42 ppm. It is an amino acid that is responsible of the
osmoregulation and modulation of the action of neurotransmitters. It is high in neonates and
decreased in adults. In in vivo studies at low magnetic field its resonances overlap with the
resonances of Myo and tCho (Govindaraju et al., 2000). Tau can differentiate gliomas from
other tumors (Tong et al., 2004).

Among the described metabolites Cho, Cr, NAA, Myo, Glu, Gln, Gly, Lac, Lips, Tau and Ala
are often considered for differentiating brain tumor (Howe and Opstad, 2003a), while Lips,
NAA, tCho and Cr are biomarkers for tumor microheterogeneity (Cheng et al., 2000; Croitor
Sava et al., 2011D).

1.3.2 Pregnancy and nuclear magnetic resonance

The pregnancy follow up, also known as prenatal screening, is a routine examination
performed for checking the conditions in a fetus or embryo before it is born. It is of high
interest for the parents and clinicians as it enables timely medical or surgical treatment before
or soon after birth in case a health problem was detected, gives the parents the chance to
"prepare" themselves psychologically, socially, and medically for a baby with a health
problem or disability, or even to abort a fetus with a certain diagnosed condition.

For a routine prenatal screening most common non-invasive techniques such as
ultrasonography are considered. If the results of the ultrasonography bring questions
regarding the health of the fetus or of the mother, a more advanced testing might be
necessary. In this situation commonly an amniocentesis is performed to extract a sample from
the AF, the substance which surrounds the baby and plays a vital role in the development of
internal organs, such as the lungs and kidneys. As organs start to prepare for independent
functioning, the baby swallows the AF, filters it through its kidneys and passes it out again as
urine. Moreover, some fluid from baby’s lungs is also eliminated in the AF. Therefore, the
analysis of the AF ca provide valuable prenatal information and can help in the diagnosis of
birth defects such as neural tube defects, Down syndrome, chromosome abnormalities,
genetic diseases and fetal infections.
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About congenital diaphragmatic hernia

Congenital diaphragmatic hernia (CDH) is a birth defect with a birth prevalence of
approximately 1 in 4000 (Deprest et al., 2004). It is characterized by a defect in the diaphragm
(the thin muscle separating the chest from the abdominal cavity) which allows abdominal
organs (intestines, stomach, liver) to protrude into the thorax. The impairment in lung
development (pulmonary hypoplasia) that accompanies the diaphragmatic defect is associated
with high rates of neonatal mortality and morbidity.

Diagnosis and Prognosis

CDH can be diagnosed by ultrasound during pregnancy. To assess lung size, liver herniation
and possible additional malformations, fetal Magnetic Resonance Imaging (MRI) is often part
of the CDH follow-up in specialized centers. Up to 30% of babies presenting with isolated
CDH do not survive the early weeks of life as postnatal treatment options fall short for severe
cases of pulmonary hypoplasia.

Therapy

Nowadays, fetoscopic endoluminal tracheal occlusion (FETO) can be offered to fetuses with
severe lung hypoplasia as prenatal therapy in an experimental setting. Blocking the fetus’
windpipe with an inflatable balloon (Figure 1.13), hence, entrapping lung liquid and thus
increasing intrapulmonary pressure seems to stimulate lung growth and development. Early
data comparing fetuses treated by FETO against fetuses only treated postnatally indicates an
increased survival for the FETO group.

Treating CDH fetuses using FETO usually comprises two interventions: the insertion of the
balloon around 26-30 weeks and the removal of the balloon around 34 weeks. The procedure
is nowadays generally performed under combined fetal analgesia and immobilization as well
as maternal spinal-epidural anesthesia. Then a thin-walled cannula is inserted under
ultrasound-guidance into the amniotic cavity through the abdominal and uterine walls and
directed towards the fetal mouth. A purpose-designed fetoscope is inserted via a 3.0-mm
sheath and introduced into the trachea to position a detachable balloon between the carina and
the vocal cords (see Figure 1.13). As the balloon blocks the fetal airways, it needs to be
removed preferably before birth (reversal of tracheal occlusion (rTO). This can be done by an
ultrasound-guided needle puncture or a second fetoscopic procedure.

NMR in the diagnosis and prognosis of CDH

Previous studies have shown that the use of magnetic resonance methods can aid in the
clinical routine for monitoring pregnancies (McGowan et al., 1993). Compared to the
ultrasound technique, which is mostly considered in the routine fetal follow up, with NMR we
obtain not only detailed structural, but also biochemical and functional information, which
cannot be obtained by ultrasound.
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Figure 1.13 FETO schematic illustration. Figure from (Deprest et al., 2004)

Fetal MRI is of increasing interest in the diagnosis, prognosis and follow up of abnormal
pregnancies. It is an important technique to study fetal lung growth during the second and
third trimester. The excellent tissue contrast of MRI allows (Kasprian et al., 2006) to examine
the structure of the fetal lung and offers more details on fetal pulmonary pathologies. In CDH,
fetal MRI is applied to gain information on lung size, the nature and amount of herniated
organs as well as potential further malformations.

Studies on human AF using NMR spectroscopy have shown the correlation between AF
metabolites, gestational age, and the health status of the mother and fetuses. Therefore,
several metabolites associated with fetal developmental abnormalities have previously been
identified by MRS. In Figure 1.14 is illustrated a typical AF spectrum. Metabolic correlations
with disorders such as spina bifida (Bock, 1994; Groenen et al., 2004), diabetes (McGowan,
1999), Down syndrome (Bock, 1994), cystic fibrosis (Le Moyec, 1994) and congenital
malformations (Graca et al., 2009) were reported. Further information on changes in
metabolic patterns related to fetal lung (Pearce et al., 1993; Clifton et al., 2006) and kidney
maturation (Bock, 1994) exist. Moreover normative values were suggested for the second and
third trimester (Cohen et al., 2009). Recently, high field NMR studies have identified several
additional AF metabolites, determined the effects of freeze-thawing, and evaluated long term
sample stability at room temperature, —20, and —70°C (Graca et al., 2007). No studies
focusing on the metabolic profile of fetuses with CHD using NMR spectroscopy exist so far.
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Figure 1.14 Typical AF spectrum obtained with high resolution NMR spectroscopy.

1.4 Organization of the thesis

The contents of this thesis is organized in nine chapters structured as follows (see also Figure
1.15).

Chapter 1 presents the basic principles of NMR with focus on different MR modalities (MRI,
MRSI, ex vivo HR-MAS and high resolution MRS) which are used in the studies of this
thesis. The characteristics of each of these modalities are summarized by emphasizing the
differences, giving their advantages and limitations. A minimal medical background over
brain tumors (statistics, diagnosis tools, treatments, main types of brain tumors) and the
follow up of pregnancies based on the analyses of the AF is given. The links between
metabolite concentrations and these two clinical conditions are shown. The chapter concludes
with the goals of the thesis, gives a chapter-by-chapter overview, and presents the author’s
personal contributions.

Chapter 2 is an overview of the typical preprocessing and processing steps for MRS signals
with focus on the methods used in this thesis in Chapters 4 to 8. It also introduces basic
concepts in order to understand the following chapters.

Chapter 3 reviews briefly the pattern recognition methods considered in this thesis.
Supervised classification, unsupervised classification and performance measurement methods
are presented.

Chapter 4 describes a novel metabolite quantification method for MRSI data, AQSES-MRSI,
in which the available spatial information is exploited. A nonlinear least squares algorithm is
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proposed. Prior knowledge is included in the form of proximity constraints on the spectral
parameters within a grid, optimized starting values and a penalty term that promotes a
spatially smooth spectral parameter map. AQSES-MRSI’s accuracy on simulated MRSI data
with several types of disturbances and on short echo time in vivo proton MRSI data is
presented. Moreover, AQSES-MRSI performance is compared against several existing
quantification methods, AQSES, QUEST and LCModel.

Chapter 5 presents a methodology for characterizing glial brain tumors at a microscale level
by identifying distinct histopathological tissue properties, such as viable tumor cells, necrotic
tissue or regions where the tumor infiltrates normal brain using ex vivo HR-MAS
spectroscopy. Cluster analysis on feature sets coming from various metabolites and metabolite
ratios is considered for the identification of groups with distinct histopathological tissue
properties for each glial tumor type. The statistically significant correlation between the
considered feature sets and the predominant histopathological tissue properties is investigated.
Representative metabolic tissue models for each histopathological tissue property are
extracted. A statistical analysis examining which of the considered input feature values are
most sensitive in revealing the predominant histopathological property is performed.

Chapter 6 presents a comparative study where three different blind source separation (BSS)
methods: non-negative matrix factorization (NNMF), non-negative independent component
analysis (nICA) and convex analysis of mixtures of non-negative sources (CAMNS) are
applied on the full magnitude HR-MAS signals and on metabolic features extracted from the
spectra. The BSS methods are used for obtaining characteristic profiles for necrosis, high
cellular tumor and border tumor tissue, and for providing the contribution (abundance) of
each tumor tissue to the profile of the spectra. The study presented in this chapter evaluates
which of the considered non-negative BSS methods performs best. Different feature inputs
spaces are considered. NNMF is further used also on MRSI data for quantifying the
abundance of each intratumoral histopathological tissue property within each MRSI voxel.
Nosologic images based on the extracted abundance maps and reflecting the presence of
necrosis, viable tumor cells or infiltrations in the MRSI grid are obtained.

Chapter 7 presents a new methodology for investigating the potential and limitations of
fusing in vivo short echo-time brain MRSI data, HR-MAS data and MRI data to detect brain
tumors. A model-based canonical correlation analysis (CCA) algorithm is considered. We
present various modalities of combining multimodal information, and we study the effect and
the impact of using multimodal information for classifying MRSI brain glial tumor data.
Additionally, we analyze which parameters influence our classification results by means of
extensive simulation and in vivo studies. Special attention is drawn to the possibility of
considering HR-MAS information as a complementary dataset when dealing with a lack of
MRSI data needed to build a classifier.

Chapter 8 presents a pilot study to identify metabolic differences between the amniotic fluid
from fetuses with congenital diaphragmatic hernia (CDH) undergoing temporary tracheal
occlusion (TO) or its reversal (rTO) against healthy controls. Several feature reduction
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methods are separately considered in combination with automated classification techniques to
study the potential of NMR spectroscopy to differentiate CDH.

Chapter 9 is a summary of the main achievements of this thesis and presents a few open
problems and their possible solutions for future research.
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Figure 1.15: Flowchart of the thesis.
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1.5 Personal contribution and research partners

The scientific work presented in this PhD thesis finds its application in two main clinical case
studies: brain tumors and complicated pregnancies follow up.

When classifying brain tumors using MRSI data, the input used by the pattern recognition
techniques is usually, due to computational matters, a set of metabolic features extracted from
the spectra. Since metabolite concentration estimates from MRSI signals are the input
variables for advanced classifiers for tissue type differentiation and tumor recognition, it is
clear that reliable quantification results are very important. Therefore, an improved and robust
quantification method is proposed for MRSI data, AQSES-MRSI, in which the available
spatial information is considered in the form of proximity constraints on the spectral
parameters within a grid and optimized starting values. A penalty term that promotes a
spatially smooth spectral parameter map is added to the fitting algorithm. The newly proposed
approach compares favorably against single-voxel approaches, as well as against the
multivoxel approach embedded in the well-known quantification software LCModel (widely
used in the NMR community). The method is presented in detail in Chapter 4 of this thesis.
The mathematical principles underlying the AQSES-MRSI method are published as a book
chapter in Recent Advances in Optimization and its Applications in Engineering (Sima et al.,
2010). In addition, the method and its performance on in vivo and simulated MRSI data are
presented in the international journal NMR in Biomedicine (Croitor Sava et al., 2011a). This
work was done in close collaboration with the Radboud University Medical Centre Nijmegen
(RUMCN), Department of Radiology.

The most common brain tumor type, glioma, has a very unfavorable prognosis. The problem
that can mostly interfere with a reliable diagnosis and grading of glial brain tumors is the
heterogeneity that is reflected both at the level of the tumor type and grade, as well as at a
microscale level along with viable tumor cells, necrotic regions or contributions from normal
brain tissue. Since it is believed that a first screening between these different intratumoral
histopathological tissue properties would greatly assist in correctly diagnosing and prognosing
of gliomas, in this thesis the potential of ex vivo HR-MAS spectroscopy, in characterizing
these properties is further explored. Using advanced statistical methodology applied on sets of
metabolite concentrations and metabolite ratios extracted from HR-MAS recordings coming
from patients with different grades of glial tumors we show a strong correlation between the
histopathological tissue properties and the considered metabolic profiles, regardless of the
malignancy grade. The results of this work are presented in Chapter 5 and are published in the
journal Magnetic Resonance in Medicine (Croitor Sava et al., 2011b). This study was
performed in very close collaboration with the Departamento de Quimica-Fisica, Facultad de
Quimica, Universitat de Valencia, Valencia, Spain, CIBER-BBN, ISC-III, Universitat de
Valencia, Valencia, Spain and Departamento de Patologia, Facultad de Medicina, Universitat
de Valencia, Valencia, Spain.
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The study on intratumoral histopathological tissue properties is further extended through the
extraction of characteristic profiles for pure necrosis, high cellular tumor and border tumor
tissue, and through the quantification of the contribution (abundance) of each tumor tissue to
the profile of the spectra using BSS techniques. The problem is formulated as a non-negative
source separation problem using NNMF, nICA and CAMNS. This work is published in the
proceedings of Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, 2010 and an extended study on this topic is submitted as journal paper to the
Journal of Chemometrics. Furthermore, brain tumor tissue classification of in vivo MRSI data
can benefit from a similar approach. To this aim we further explore non-negative BSS
methods for quantifying the abundance within each MRSI voxel for each intratumoral
histopathological tissue property. Additionally, nosologic images are drawn based on the
extracted abundance maps, reflecting the presence of necrosis, viable tumor cells or
infiltrations in the MRSI grid. An overview of the considered BSS methods and their
application to in vivo MRSI and ex vivo HR-MAS for quantifying intratumoral
histopathological tissue properties is presented in Chapter 6. Part of the research presented in
Chapters 5 and 6 originates from the involvement in the eTUMOUR project (Web accessible
MR decision support system for brain tumour diagnosis and prognosis, incorporating in vivo
and ex vivo genomic and metabolomic data, 2004—2009, FP6-2002-LIFESCIHEALTH
503094). The aim of this project was to develop decision support systems (DSSs) to assist
clinicians in brain tumor diagnosis based on various sources of data: MRI, MRS, MRSI, high-
resolution magic angle spinning (HR-MAS), DNA microarrays and clinical information. Our
involvement within this project is related to the development and integration of pattern
recognition tools (i.e., classifiers) for brain tumor diagnosis based on MRI, MRS, MRSI and
HR-MAS data.

From the studies presented in Chapters 5 and 6 we could conclude that in vivo and ex vivo MR
spectroscopy techniques can complement each other and can provide distinct valuable
information for the interpretation and diagnosis of brain tumors. Therefore, our next goal was
to investigate the potential and limitations of using in vivo NMR information in combination
with ex vivo NMR information. To this aim, we focused on supervised pattern recognition
methods, whose performance directly depends on the available observations used in building
these classifiers. Here, the possibility of using HR-MAS data as a complementary dataset
when dealing with a lack of MRSI data needed to build a classifier is explored. This is
particularly interesting when considering rare brain tumors, since it is unlikely to acquire
sufficient cases to define their metabolite profiles using only in vivo NMR information, and
we can use ex vivo HR-MAS for determining them. In Chapter 7 different approaches to
combine HR-MAS data with in vivo MRSI and MRI data using Canonical Correlation
Analyses (CCA) are described. We investigated which parameters influence the classification
results by means of extensive simulations and in vivo studies. This work is accepted for
publication in the journal Measurement Science and Technology, 2011 and was awarded at
the 6th European Symposium on Biomedical Engineering, Chania, 2008. This research is part
the involvement in the HealthAgents project (Agent-based distributed decision support system
for brain tumour diagnosis and prognosis, 2006—2008, IST-2004-27214) where we were
responsible for the development and integration of pattern recognition tools (i.e., classifiers)
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for brain tumor diagnosis based on different NMR modalities. The study was performed in
close collaboration with the Department of Radiology, RUMCN.

Another relevant and very new clinical application of MRS is to study human AF and explore
its potential in becoming a valuable technique for the evaluation of fetal health and
development. In Chapter 8, a study on how to exploit spectral information contained within
the AF to extract reliable biomarkers for identifying complicated pregnancies and separating
between different pregnancy complications is presented. Results show that these purposes can
be achieved by using dimensionality reduction methods in combination with automated
classifiers. This work is performed in close collaboration with the Division Woman and Child,
the Centre for Surgical Technologies, the Division of Medical Imaging and the Biomedical
NMR Unit at the University Hospitals K.U.Leuven.

1.6 Conclusions

In this chapter the basic MR principles are introduced. Different MR modalities that record
different anatomical and physiological properties are presented with the focus on MRI,
MRS(I), HR-MAS and high resolution MRS data, since these data are considered in the
studies presented in this thesis. A minimal medical background with regards to brain tumor
diagnostics (facts, diagnosis tools, treatments, main types of brain tumors) is given underlying
the potential of the above mentioned MR modalities in brain tumor diagnosis. The links
between the metabolite concentrations and brain tumors as well as the MRS features that are
most relevant for brain tumor diagnosis are presented. An overview of the possible follow up
of a pregnancy behavior based on the AF analyses is given. The different goals of the thesis
are addressed giving a chapter-by-chapter overview and outlining the author’s personal
contributions.



Chapter 2

Signal processing and preprocessing

This chapter is an overview of the typical processing and preprocessing steps performed in
the analysis of MR spectra before the classification step. The focus mostly lies on those
techniques that are considered in the studies presented in this thesis. In section 2.1 the SNR
improvement, frequency alignment, phase and lineshape correction, water suppression,
baseline correction and normalization preprocessing methods are outlined. Section 2.2 gives
the theoretical background of the feature extraction methods used in the thesis. Firstly
methods that exploit the biomedical information embedded in the spectra are presented. Then,
mathematical methods where the features are extracted based on their statistical relevance
are summarized.

2.1 Preprocessing methods

The quality of NMR signals is mostly hampered by the presence of artifacts, instrumental
errors, noise and other unwanted components. Hence, before analyzing these signals,
preprocessing steps that are aimed at removing irrelevant information, while enhancing the
key features are needed. Most common preprocessing steps considered nowadays for NMR
spectroscopy analysis are noise and artifact filtering, normalization, alignment, phase
correction and baseline correction (in Figure 2.1 distorted MRS spectra are illustrated before
and after correction). The order and the number of the preprocessing methods to be
considered must be carefully chosen for each type of signals. This is due, on one hand, to the
fact that the different instrumentations and protocols used in acquiring NMR data present
different sensitivity to the artifacts listed above and, on the other hand, one step may influence
another. Feature extraction and selection methods can also be regarded as a kind of
preprocessing that helps in finding the most valuable information present in the data. In the
following paragraphs the most relevant preprocessing methods are outlined.

31
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Figure 2.1 [llustration of a. noisy spectrum and b. noise corrected spectrum; c. phase
distorted and d. phase corrected spectrum; e. frequency shifted spectra and f. aligned spectra;
g. baseline distorted and h. baseline corrected spectrum.

2.1.1 SNR improvement

The NMR signals are essentially contaminated by noise and therefore suffering from a
poor SNR. This artifact is particularly common for in vivo measurements, especially when a
short echo time acquisition protocol was followed. High resolution ex vivo MRS
measurements are characterized by higher SNR compared to in vivo MRS.

When the spectral resolution is too low to identify the resonances, increasing it can be
achieved by truncating the last points of the time domain signal (which are considered to
consist mainly of noise). Other techniques commonly used for improving spectral resolution
in a measured NMR spectroscopy signal represented in the frequency domain include zero-
filling and apodization.

Zero filling is the procedure of artificially extending the acquisition time by appending zeros
to the acquired FIDs. The zero-filling procedure performed in the time-domain translates into
a spectral interpolation in the frequency domain. Zero-filling beyond twice the number of
original data points only leads to a trigonometric interpolation, which provides no further
SNR enhancement (Bartholdi and Ernst, 1973; Ebel et al., 2006), and allows resolution
enhancement only in rare cases (Lindon and Ferrige, 1980).
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Apodization. Another widely used procedure for SNR improvement is apodization, i.e., the
point-wise multiplication of the time-domain signal with a weighting function that typically
attenuates the parts of the signal that exhibit low SNR (Ebel et al., 2006, De Graaf, 2007).
Usually, an exponentially decaying weighting function is used for this purpose. In this way,
the initial points of the FID get a higher weighting than the points at the end of the FID, which
mainly contain noise. If an exponentially increasing weighting function is used, this leads to
narrower peaks in the MR spectrum, but a decreased SNR because of the higher contribution
of the points at the end of the FID.

In (Ebel et al., 2006) the importance of zero-filling in combination with apodization has been
discussed in the context of 1D and 2D NMR spectroscopy, as well as MRSI. The combination
of apodization with zero-filling could not provide higher sensitivity enhancement.

2.1.2 Frequency alignment

The chemical shift is dependent on the pH and temperature which may vary from one sample
to another and thus complicates the alignment of the spectra. These effects are in particular
noticeable for high resolution ex vivo MRS data. In vivo measurements can also suffer from
frequency shifts. Since most feature extraction methods require a correct alignment of the
spectra, special attention must be paid to this step.

For in vivo MR data, large peaks, such as NAA, Cho or Cr are generally used as reference for
the alignment, while for ex vivo HR-MAS data doublets are preferred (e.g., Ala or Lac
doublet). If a reference chemical substance was added to the solution before the measurement,
this reference peak is commonly used for the alignment. The spectra are shifted in the
frequency domain for alignment and, if needed, transformed back into the time domain by the
inverse Fourier transformation.

2.1.3 Phase correction

Phase corrections are meant to transform the acquired MRS signal such that its spectrum is in
absorption mode, i.e., peaks in the real part of the spectrum are positive. The first-order phase
shifts arise from the delay between the excitation pulse and the first point of the acquisition of
the time domain signal and are linearly frequency-dependent. Zero-order phase correction is
possible by multiplying the complex spectrum by a complex phase factor equal to the initial
phase of the FID (Jiru, 2008).
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2.1.4 Eddy current correction

Eddy currents artifact is induced by the rapid switching in the magnet coils and surrounding
metal structures. It is described by the Faraday’s law of induction (De Graaf, 2007). Eddy
currents can be corrected by point-wise dividing the water suppressed signal by the phase
term of the water unsuppressed signal in the time-domain (Klose, 1990).

2.1.5 Lineshape correction

The lineshape of MRS signals can be additionally distorted due to inhomogeneities of the
magnetic field, which may be caused by tissue heterogeneity. Traditionally, Lorentzian
lineshape for each spectral component, or correspondingly, complex damped exponential
components in the time domain, are expected.

A typical assumption of the methods that deal with the lineshape corrections is that all
spectral components in the signal are affected by the same spectral distortions. A fundamental
difference in the methods used in correcting these artifacts concerns whether they use a
reference signal or they do not. Reference deconvolution methods need a reference signal,
which is either a separate measurement, or a spectral component extracted from the analyzed
signal. Here we mention the FIDDLE (free induction decay deconvolution for lineshape
enhancement) method proposed in (Morris, 1988; Morris et al., 1997) and the QUALITY
(quantification improvement by converting lineshapes to the Lorentzian type) method
proposed in (De Graaf, 1990). Further developments for automating these methods have been
proposed in (Webb et al., 1992; Maudsley et al., 1994). The QUECC method (Bartha et al.,
2000) is meant to benefit from the advantages of both QUALITY for a complete correction of
the lineshape and Klose’s eddy current correction method (ECC) (Klose, 1990), which can be
applied when an additional water-unsuppressed reference signal is acquired.

When the goal of lineshape estimation is improving the quantitation results rather than
visually correcting the spectrum, it is better to include the reference signal as part of the
quantitation method. In (Maudsley, 1995), a self-deconvolution method which does not
require the use of a reference signal is proposed. In (Sima et al., 2009) the self-deconvolution
method for lineshape correction is combined with the quantification method AQSES. Later,
an improvement of the method is proposed in (Osorio Garcia et al., 2011).

2.1.6 Water filtering

'"H NMR spectroscopy measurements fail to suppress completely the water resonance without
affecting the metabolites of interest. Consequently, the so-called water suppressed MRS
signals still contain a residual water contribution. The water resonance frequency region is
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well known to be around 4.7 ppm and therefore it is close to the region where other
metabolite resonances of interest are located. Hence, a water filtering step is mostly necessary
when analyzing MRS data. Additionally, time-domain quantification methods cannot be used
without accounting for the water components. Frequency-domain quantification methods (see,
e.g., Mandelshtam et al., 1998; Mierisova and Ala-korpela, 2001; Hiltunen et al., 2002; Stoica
et al., 2003; Gabr et al., 2006) can be applied directly to the water suppressed signal, because
they can exclude in a straightforward way unwanted regions from the spectrum, but they
should consider the water tails as part of the baseline.

Water filtering can be performed using convolution-based methods (Marion et al., 1989;
Sodano and Delepierre, 1993; Cross, 1993; Sundin et al., 1999; Antoine et al., 2000, 2001;
Giinther et al., 2002, Poullet et al., 2009) which convolve the original signal with the
coefficients of a filtering window. Water filtering can also be performed using a subspace-
based modeling approach such as Hankel singular value decomposition (HSVD) (or its more
computationally efficient implementations, Hankel Lanczos singular value decomposition
(HLSVD) or HLSVD with partial reorthogonalization (HLSVD-PRO)) (Barkhuijsen et al.,
1987; Pijnappel et al., 1992; Chen et al., 1996; Laudadio et al., 2002). In these methods the
whole signal is fitted as a sum of complex damped exponentials. Afterwards, the components
whose frequencies are estimated in the frequency region of the water resonance are
subtracted. These filtering methods are sometimes embedded in the quantification algorithm,
such as AQSES (Poullet et al., 2007a).

2.1.7 Signal normalization

When analyzing datasets of MRS signals one might observe signal intensity differences
between the spectra. This phenomenon is mostly obvious if the data are acquired by several
clinical centers, on various scanners or with different acquisition protocols. Even if similar
acquisition conditions were followed, the difference in the type of tissue under investigation
can also lead to intensity differences between the spectra. Normalization is the procedure used
to compensate for these differences.

Typically two main normalization approaches are applied to MRS signals: normalization with
respect to a particular mathematical norm and normalization by division to the intensity of a
particular molecule.

Mathematical normalization. This approach involves division of each spectral value by the
norm (e.g. L1, L2) of the spectrum, or a part of the spectrum. L/-norm is defined as the sum
of the absolute value of the elements in a vector (this corresponds to the integral of the
magnitude spectrum) and L2-norm is defined as the square root of the sum of the squares of
the elements in a vector (Tate et al., 1996, 1998, 2003; Usenius et al., 1996).
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Normalization by the intensity of a molecule. When analyzing brain tissue, commonly the
amplitude of Cr (Preul et al., 1996), which is assumed to be constant, is used as reference for
the signal normalization. Nevertheless, Li et al. (2003) found that this normalization approach
increases variability. An alternative is to divide the spectrum by the intensity of water, in case
an additional measurement of a corresponding water unsuppressed signal, acquired with the
same acquisition parameters and originating from the same tissue is available (Usenius et al.,
1996). The intensity of the water peak can be estimated for example by taking the highest
value in the time domain signal, by peak integration in the frequency domain (Meyer et al.,
1988) or by modeling the water unsuppressed signal using HSVD (Barkhuysen et al., 1987),
HLSVD-PRO (Laudadio et al, 2002) or other modeling approaches. For ex vivo
measurements a reference substance is frequently added to the solution in a known quantity
before the measurement of the NMR signals. The signal normalization can therefore be
performed with respect to this substance.

2.1.8 Baseline correction

When analyzing human tissue using NMR spectroscopy techniques, besides the metabolites,
also other types of components might be captured in the MR spectra, such as lipids and
macromolecules (MMs). MM signals are characterized by broad spectral lines (short 75),
which often overlap in the frequency domain with metabolite components. Thus, in the
frequency domain, the lipids and MMs contamination is observed as an underlying profile
called baseline. Another type of baseline is caused by the distortion of the initial FID data
points due to instrumental imperfections (also called rolling baseline), but this does not form
the subject of this thesis since the MRS signals analyzed here do not suffer from rolling
baselines, but have instead a macromolecular baseline.

Many applications involving spectroscopic data analysis require a baseline correction. The
goal is to disentangle the macromolecule contributions from the metabolite signals. One way
is to measure an MM signal with an inversion recovery pulse (Hwang et al., 1996), but this
significantly extends the measurement time. Other approaches include modeling the MMs
signal using mathematical functions either as a preprocessing step such as: interpolation
(Golotvin and Williams, 2000; Cobas et al., 2006), randomization (Williamson et al., 2006);
iterative wavelet transform (Galloway et al., 2009), approximation using linear functions
(Hiltunen et al., 1991) or analytical functions such as Fourier series (Stephenson and Binsch,
1980) or polynomials (Brown, 1995; Dietrich et al., 1991); in combination with quantification
(see for e.g. Young et al., 1998; Soher et al., 2001) or embedded in the quantification step (see
for e.g. Provencher, 1993; Elster et al., 2005; Ratiney et al., 2005; Poullet et al., 2007a).
Modeling of the baseline can be done by Lorentzians, wavelets, polynomial or spline
functions (Provencher, 1993; Bartha et al., 1999; Soher et al, 2001; Seeger et al., 1999, 2001,
2003; Ratiney et al., 2004; Cudalbu et al., 2009).
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The baseline correction approaches considered in this thesis are:

= using an apodization function (Simonetti et al., 2003). The FID is point-wise
multiplied in the time-domain with an exponentially decaying function. This
requires only the decay as parameter to be selected. The resulting spectrum which
mainly contains the broad baseline components (the baseline consists of broad fast
decaying components and their main contribution is in the first part of the FID) is
subsequently subtracted from the original spectrum, yielding the baseline-corrected

signal.

=  truncation of the initial points in the FID. This approach is applied by (Ratiney et al.
2004) as a sub-step of the method QUEST. Removing the initial part of the FID
should suppress the baseline components. However, the disadvantage is that also
part of the metabolite contributions might be suppressed.

=  Non-parametric modeling of the baseline with spline functions in AQSES (Poullet
et al., 2007a).

2.2 Metabolite extraction methods

2.2.1 Feature extraction

'H MR spectroscopy, when combined with reliable and robust classification strategies can
represent a powerful noninvasive tool for detecting and classifying diseases and/or disease
stages. An important part of the classification strategies is the selection of the input space.
When considering MRS data, the input used by the pattern recognition techniques is either the
full spectra or a set of features extracted from the spectra. When dealing with metabolic data
one may consider extracting features based on their biochemical relevance in the
classification problem. This approach involves some prior knowledge with regards to the
metabolites to be extracted as features, as well as their spectral model. Another possibility is
to extract statistically significant features, relying strictly on their mathematical relevance in
solving the classification problem. This approach is usually preferred when no prior
knowledge on the metabolites present in the data is available a priori.

Full spectra

When considering the full spectra, all the points of the real or magnitude spectrum in the
frequency region of interest are considered. In this thesis, for avoiding phasing problems and
since only minor difference has been reported between performances based on magnitude
spectra and real spectra (Devos et al., 2004; Opstad et al., 2007), the magnitude spectra have
been used.
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Why considering a feature space reduction?

A full spectra approach might not be suitable for all MR spectra of biomedical origin
classification, whether ex or in vivo. One may deal with the complications that occur because
such spectra are complex, noisy and with overlapping peaks. Additionally, the samples
present an overabundance of spectral features since each spectrum consists typically of
hundreds of attributes (the frequencies), with the majority redundant or correlated, coming
from the contributing metabolites. If there were an infinite number of samples, then the
classification accuracy would increase with increasing number of features. Yet, in real life we
are dealing with classification problems with a finite number of samples. Therefore the so-
called peaking phenomenon (Allais, 1966; Chandrasekaran and Jain, 1974) may occur and
beyond a certain number of features the classifier performance will decrease. Thus, there is an
optimal number of features and this number depends on the classifier, on the characteristics of
the features and on the sample size. Consequently, the goal of feature selection/extraction is
to preserve the most relevant information, to minimize redundancy and to exclude the noise
and artifacts present in the spectrum. Moreover, it simplifies the calculation and therefore the
computation time is reduced (Guyon et al., 2006a; 2006b; Liu and Motoda, 2007). Due to
computational matters, using the metabolite tissue concentrations as input features is
preferred, as previous studies reported high accuracy with such feature-based classification
approaches (Devos et al., 2004; De Vos, 2009; Luts et al., 2009a).

2.2.2 Extraction of features with biomedical information

Since characteristic resonance peaks correspond to metabolites that are relevant biomarkers
for classifying a clinical condition (Murphy et al., 1993; Mukherji, 1998; Smith and Stewart,
2002; Leclerc et al., 2002; Howe et al., 2003b; Bock, 1994; Clifton et al., 2006) it is then
reasonable to use these peaks, resembling the metabolite concentration in the spectrum under
investigation, as discriminatory features. For estimating the metabolite concentration, simple
frequency domain methods can be considered, such as peak integration (Hoch and Stern,
1996), where the selected frequency regions are taken as intervals around the resonance
frequencies (Govindaraju et al., 2000) of several characteristic metabolites; peak bucketing
(points of the spectra in several particular disjoint frequency regions corresponding to the
regions of interest are considered as features); binning (i.e., gathering adjacent spectral
points). More accurate quantification methods are the model-based approaches, which can
also work in frequency domain, such as LCModel (Provencher, 1993), or in time domain such
as AMARES (Vanhamme et al.,, 1997; Lemmerling et al., 2002), QUEST (Ratiney et al.,
2005) or AQSES (Poullet et al., 2007a).

2.2.3 Peak integration

In spite of the fact that, in the recent years, frequency-domain and time-domain fitting
methods for spectral quantification have gained interest, spectral peak integration is still



39

widely used. Peak integration is a simple non-parametric method to estimate metabolite
concentrations in the frequency domain. The method does not make any model assumptions;
it is non-iterative, very fast and quite robust. To integrate the area under the peak, Simpson’s
rule or trapezoid rule can be considered. In this thesis the integration is performed based on
the trapezoidal rule. Figure 2.2 is an illustration of the method. Peak integration results
depend widely on the way the integration intervals are defined. One possibility is to consider
symmetric regions around the theoretical resonance frequency of the peak (Devos et al.,
2005). In reality it is well known that the metabolite resonances can be misaligned, due to
variations in temperature, pH or physiological abnormalities. Consequently the resonance
frequency can deviate from the theoretical one and therefore would lead to biased
quantification results. Another approach is to consider dynamic integration intervals by
finding the highest peak of the considered metabolites and then fix the bounds at those ppm
values at which peak slopes return to baseline (Croitor Sava et al., 2011d). Regardless the
approach used in integrating the area under the peak, the accuracy of this method can not
always be guaranteed due to its sensitivity to the artifacts which are often present in the NMR
signals. Moreover, the method does not succeed to extract reliable information from
individual peaks when these are overlapping with each other. Residual baseline and low SNRs
have also an influence on the peak-integrated values. Additionally, the tail of the peaks is also
neglected by peak integration and the area under the peaks will therefore be underestimated,
possibly by up to 40% (Meyer et al., 1988).

1100 1000 500

Figure 2.2 Integration of peak areas. The selected regions to be integrated are indicated
through the vertical grey bars.

When applying peak integration, special attention must be paid to the correct preprocessing of
the MR spectra, in particular to their alignment (see section 2.1.2) and phasing (see section
2.1.3). Because the chemical shift is dependent on pH and temperature and therefore may vary
from one sample to another, the alignment of the spectra is not always straightforward. In
what concerns the phasing, several studies prefer to use the magnitude of the spectra instead
of their real part for performing peak integration, (Tate et al., 2003; Lukas et al., 2004; Devos
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et al.,, 2004; Menze et al., 2006). In general, the advantage obtained from omitting phase
correction by using the magnitude spectra outweighs the drawback of increasing linewidths,
which could lead to more peak overlap in these magnitude spectra than in the real part spectra.

2.2.4 Model-based methods

MRS and MRSI signals are measured in the time-domain and are Fourier transformed for
better visualization into frequency-domain spectra. In most of the model-based quantification
methods an appropriate nonlinear model is fitted to the measured MRS signal by minimizing
the sum of the squared residuals, which is the maximum likelihood solution under the
assumption of additive white Gaussian noise. The fitting can be done in the time domain with
methods as AMARES (Vanhamme et al., 1996), QUEST (Ratiney et al., 2005) and AQSES
(Poullet et al., 2007a); in the frequency domain using for example LCModel (Provencher,
1993, 2001), or by combining both domains with TDFDfit (Slotboom et al., 1998). Methods
such as LCModel, QUEST or AQSES use metabolite basis sets, which can be built up from
simulated spectra (e.g., via programs based on quantum mechanics such as NMR-SCOPE
(Graveron-Demilly et al.,, 1993) or GAMMA (Smith et al., 1994)) or in vitro measured
spectra. Using a metabolite basis set facilitates the disentangling of overlapping resonances
and has been shown to provide better accuracy (Cavassila et al., 2000)

MRS model

The free induction decay (FID) signal can be modeled analytically in the time-domain (or,
equivalently, its Fourier transform can be modeled in the frequency domain) as a linear
combination of K possibly damped, phased and frequency-shifted metabolite templates.
Hence, having a “metabolite basis set” {V, , for k =1,...K} of complex-valued signals of

length N, the typical mathematical model for an FID signal,  , is expressed as:

K
H6)= D a exp(jd ) exp(=dyt + 27f; 1)y (0 +b(0) +w())  .1)
k=1

where d are positive amplitudes of the metabolites in the basis set, ¢k are phase shifts, f; are
frequency shifts, d; are Lorentzian damping factors that account for the necessary corrections
of the basis set signals, j=+/—1 and ¢ denotes a particular time instant among the discrete

measuring times #,, . . ., t,—;. The b(t) denotes the “baseline”, which is the response of the
macromolecules that are not included in the basis set, and w(?) denotes the water component.
The amplitudes are proportional to the concentration of the respective molecule.
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This model contains useful prior knowledge due to the inclusion of the metabolite profiles,
since many metabolites resonate at more than one frequency, depending on the molecular
configuration.

Model fitting
An in vivo NMR signal y, which is also a complex-valued time series of length V, is assumed
to satisfy:

y@) =30 +¢, (2.2)

where term £, denotes an unknown noise perturbation with zero mean.

Typically, a single voxel time-domain model-based quantification problem can be expressed
as a nonlinear least squares (NLLS) problem of fitting model (¢) to a measured signal:

In-1

. ~ 2
min > |y(0) - 5(0) 23)
a]i’l‘bk,[?k,fk =0

Figure 2.3 shows a measured basis set of metabolite spectra V, that are used for fitting the in

vivo measured MRS signal from the human brain from Figure 2.4.

When considering a metabolite basis set the protocol used to simulate/acquire these
metabolite signals should reproduce the same conditions as to the ones used to acquire the
NMR signals to be quantified. Using measured or simulated basis sets on metabolite
concentration estimates can provide slightly different results (Cudalbu et al., 2008).
Additionally, the number of components used in the quantification may also have an influence
on the robustness of the quantification method (Poullet et al., 2007a).
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Figure 2.4 An in vivo 1.5T MRS spectrum fitted with the metabolite basis set. The metabolite
spectra are shifted in frequency with f, Hz, broadened (by increasing d;) and scaled to an
appropriate amplitude a;,

2.2.5 AQSES

AQSES (Accurate Quantitation of Short-echo Time Magnetic Resonance Spectroscopic
Signals) is a time-domain quantification method (Poullet et al., 2007a) that fits the whole
complex measured signal in the time domain to a nonlinear model (Sima et al., 2007). The
method AQSES is embedded in Java (AQSES GUI) and Matlab (SPID) software packages,



43

both available online at: http://homes.esat.kuleuven.be/~biomed/software.php. An illustration
of the software is provided in Figure 2.5. AQSES method uses a database of metabolite
profiles that are measured in vitro or quantum-mechanically simulated.
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The method is designed to deal with the macromolecular contributions by incorporating the
baseline b into the fit as a non-parametric model based on penalized splines. This typically
requires less spline functions than smoothing splines, which are used for instance in
LCModel. In order to model the baseline in the time-domain, a basis of splines is created and
then passed through the discrete inverse Fourier transform; the resulting discretized functions
are put as columns in a matrix 4. Then the baseline b can be written in matrix notation as the
product Ac. The coefficients in this linear combination, cj, ... ¢, are unknowns that must be
identified. AQSES solves the regularized NLLS criterion by fitting the model and the smooth
baseline at the same time:

In-i
min—Y |y 50 + 2Dl 2.4
=0

A . . 2. .
where y(f) is computed as defined in Eq 2.1. The term A "Dc" imposes a certain degree of

smoothness to the baseline b. The regularization matrix D measures the smoothness of the
baseline in the frequency domain. The regularization parameter A controls the degree of
smoothness.

Neglecting the water filter for the sake of simplicity, the NLLS problem in Eq. 2.5 becomes:

2
»(t;) - ZkK:1ak exp(j @, ) exp(=dyt; + 271, 1;)v, (1) — (Ao);| + /12"[)0"2 25)

N-1

. 1
min  — E
apdidi Sre N

which can be rewritten in a compact matrix form as:

1
ak,;?c}?fk,cﬁuy ~¥(g)a—Ad +Z|Dd’ (2.6)

with y =[y(ty).. 0ty 1", a=a; exp(@))...ax exp(@y )] and W(¢) is an N x K matrix
defined as:

Wy =exp((=dy + j274 )t )V, (4;) (2.7)
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In AQSES, the water term w(?) in Eq. 2.1 is filtered and the region that should be filtered out
of the signal must be specified by the user. The purpose of this step is to suppress all the
components in the specified frequency region so that there the spectrum becomes smaller than
an estimated noise level, while the frequency regions of interest are kept undistorted.

AQSES is implemented using a variant of the variable projection VARPRO algorithm (Golub
and Pereyra, 2003). The parameters appearing linearly into the model (the complex
amplitudes and phases) are projected out of the least squares problem. Only a smaller sized

NLLS problem remains to be solved for the nonlinear variables d P fk, via an iterative

minimization algorithm of the Levenberg- Marquardt type. This procedure increases
robustness of the parameters, in particular when the number of metabolites is not known a
priori. Additionally, in AQSES, the classical VARPRO method is extended by imposing
constraints on the nonlinear parameters (Sima, 2006) via upper and lower bounds or via linear
equalities between some variables of the same type. Some constraints can be imposed also on
linear parameters, such as non-negative amplitudes and equal phases.

The Levenberg-Marquardt algorithm needs good initial values for its variables, but the initial
values for all the nonlinear parameters (frequency and damping corrections) are set in AQSES
to zero, which means that the optimization starts with no spectral corrections to the signals in
the database. In the equal phase case, an initial guess for the common phase corrections is
estimated from a preliminary optimization round of the free phase algorithm.

AQSES is designed for the quantification of single voxel MRS data. It can be successfully
used for quantifying MRSI signals, but each voxel signal is treated individually.

2.2.6 QUEST

QUEST is a semi-parametric time domain quantification method (Ratiney et al., 2005). It can
be successfully used for quantifying single voxel MRS, as well as for HR-MAS signals
(Rabeson et al., 2008). As AQSES, the method uses a Levenberg-Marquart algorithm to
minimize the SSR (Sum of Squared Residuals) with the signal model (2.1). The method is
implemented in the software package j]MRUI- 4.0 (http://www.mrui.uab.es/mrui/), see Figure
2.6.

The NLLS problem in QUEST can be formulated as:

.1 2
7] 2.8
min N Hy (g)aﬁ‘ (2.8)
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with the same notations as in Eq. 2.6. The NLLS fit method used in QUEST is described in
(De Beer and van Ormondt, 1992).
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Figure 2.6. 'H MRS spectrum of a 1.5T PRESS 23 obtained using a PRESS sequence,
quantitated with QUEST.

The method is also able to deal with the baseline via the following procedure (Ratiney et al.,
2005):
=  estimation of the model parameters by fitting a truncated version of the FID without
its initial data points, which contain the macromolecular contribution
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= back-extrapolation of the model towards the first time instant

= background signal (or baseline) estimation by subtracting the back-extrapolated
model from the original FID

= modeling (or smoothing) of the background signal

= parametric NLLS fitting of the disentangled metabolite signal knowing the
background

Water filtering is not integrated in QUEST. Therefore it has to be performed as a
preprocessing step prior to the quantification. For quantifying MRSI data, with QUEST
spatial knowledge is not considered and therefore each voxel signal is treated individually.

2.2.7 LCModel

LCModel is a semi-parametric frequency domain quantification method (Provencher, 1993,
2001). It models the spectrum as a linear combination of in vitro metabolite profiles. A
baseline approximation, using splines, is also included in the method. The method is
commercially available in the LCModel software package, see Figure 2.7.

LCModel fits only the real part of the frequency domain signal as:

B K S
Y(v,) = exp(—j(g, + quﬂl)){Z BB+ C Y SM it k) | 29

i=1 k=1 n=-S

N
with C;, 20,7, 20 and z S, =1. C, represents the concentration of the k™ metabolite
n=—S
@, and ¢ are the zero-order and first-order phase corrections, respectively. The in vitro

metabolite spectra, My(V ; 0, 0), are broadened and shifted with the parameters ¥, A,

respectively, such that:
M (Vs Vi, Ag) = FET{m () exp(=(; + j274)i} (2.10)

with my(f) the inverse Fourier transform of the model spectrum M;(v; 0, 0). The baseline is
represented by cubic B-splines, B;(v) and the lineshape coefficients S, take field
inhomogeneities and eddy currents into account.
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LCModel uses a Marquardt modification of a constrained Gauss-Newton least squares
algorithm. The LCModel software package also offers the possibility to analyze MRSI data in
one multivoxel run. For this it first analyzes a central voxel of the subset and then works
outwards, in a row-by-row analysis, using Bayesian learning to get starting estimates and
“soft constraints” for the first-order phase correction and the referencing shift from the
preceding central voxels for the outer voxels. These are preceded by locating Cho and NAA
peaks for a "preliminary analysis" for the improved estimation of phase and frequency
adjustments.
csl
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Figure 2.7 LCModel quantification window for an 'H MRS spectrum of a human brain at
1.5T. Image provided by RUMCN.

2.2.8 Quantification of multivoxel MRSI data

Compared to ex vivo NMR measurements, in vivo MRS and especially in vivo MRSI data are
obtained with a much lower spatial and spectral resolution. Thus, there is a considerable
interest in improving the reconstruction of metabolite maps from MRSI. One way is to
incorporate anatomical spatial information as a prior for improved reconstruction of
metabolite images. This idea was exploited in several contributions that have considered the
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spatial information in MRSI data analysis and mostly in the classification, starting with Szabo
De Edelenyi et al. (2001).

The common hypothesis in these studies is that two adjacent voxels resemble each other in
terms of metabolite concentration. Laudadio et al. (2005b) proposed to use a 3x3 spatial
model when considering spatial information for improved MRSI classification.

Moreover, MRI images, which are acquired together with the MRSI data, can help to decide
how similar two adjacent voxels are. For example, two adjacent voxels, one with glioblastoma
tissue and the other with healthy tissue, should not influence each other in the parameter
estimation. Therefore a weighting matrix constructed based on the MRI information could
say to what extent a surrounding voxel influences the voxel under investigation by giving
more weight to the voxels with similar tissue type and similar location.

For quantifying metabolites in a grid of MRSI voxels, a straightforward approach is to apply a
single-voxel quantification method, such as QUEST, AQSES, AMARES or others, to each
signal in the grid individually. MRSI signals usually have a much lower quality than single
voxel, due to the spatial/spectral trade-off for the available measuring time. This also implies
that metabolite components become more strongly overlapping in frequency and metabolites
present in low concentration are almost embedded in noise. Therefore, these data are more
prone to quantification errors. Supplementary spatial information expressed as constraints on
the optimization parameters would be very valuable in analyzing this type of data. Thus,
spatial information can be exploited in the MRSI quantification to prevent the optimization
algorithm to converge toward a wrong local mimimum (Kelm, 2007).

AQSES-MRSI (Croitor Sava et al., 2011a), an advanced metabolite quantification method for
MRSI data, in which the available spatial information is considered, is described in detail in
Chapter 4. An illustration of AQSES-MRSI quantification window, which is embedded in
SPID user interface, is presented in Figure 2.8. The method is an extension of AQSES and
includes prior knowledge in the form of proximity constraints on the spectral parameters
within a grid and optimized starting values, and a penalty term that promotes a spatially
smooth spectral parameter map. Smoothness of a 2D parameter map can be locally measured
at every voxel (£, k) in the grid by using the parameter value at the current location and the
values in a certain neighborhood. We denote that two voxels are neighbors by (£1, k1) ~ (€2,
«2). Because MRSI grids are rather coarse, we usually focus on 3x3 regions with the current
voxel (£, ) in the center. When (€, k) is on the border of the MRSI grid, only the available
neighbors are used. A possible measure for the smoothness at point (£, k) is given by the first
order difference norm:

D (i —1py) @11)

(@.))~(1k)
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where p stands for any of the parameters considered in the quantification (damping,
frequency) for any k. Second order formulas are also possible, such as the second order

differences:

Cpy = Prag — Praik )’ + Cpuw = Prx = Prj—1 — Prin )’ (2.12)
2
APy = Proig = Prsig — Pri—1-Pri+1) (2.13)

The multi-voxel quantification approach AQSES-MRSI is more accurate than individually
fitting each signal in the grid. The relevance of this approach on simulated and clinical MRSI
data obtained from brain tumor patients has been evaluated in (Croitor Sava et al., 2011a) and

is presented in Chapter 4.
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Figure 2.8 An illustration of the quantification results window for AQSES-MRSI, as it is
displayed in SPID user interface. Left: the obtained metabolite maps. Right: the Cramer-Rao

confidence maps.

2.2.9 Extraction of features using statistical criteria

When no prior knowledge regarding which resonances are relevant for the given classification
problem is available, one may consider extracting features based on statistical properties such
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as the variability, similarity or dissimilarity within the data. Using automatic feature
extraction methods, such as principal component analysis (PCA) or principal coordinate
analyses (PCO), the data can be transformed so that the new variables/features best reflect the
above properties. Moreover, only useful information is kept, while noise or artifacts are
filtered out. This approach was considered when analyzing the AF spectra where no prior
knowledge regarding the metabolites present in the data was available and, additionally, the
spectra present high complexity (a very high number of metabolic peaks can be visually
identified).

Principal component analysis

Principal component analysis (PCA) (Jolliffe, 2002) is an unsupervised multivariate technique
introduced by (Pearson, 1901).1It transforms a set of correlated features into a set of
uncorrelated features, called principal components (PCs). The PCs are expressed as linear
combinations of the original features.

PCA is based on the calculation of the eigenvalue decomposition of a data covariance matrix
or singular value decomposition of a data matrix, usually after mean centering the data. After
organizing our data as an n by m matrix, X*, with zero empirical mean (the empirical (sample)
mean of the distribution has been subtracted from the dataset), PCA finds the optimal linear
transformation for extracting the subspace that has largest variance, by computing:

Ylr=xTw=rx (2.14)

where Wis the mxm matrix of eigenvectors of XX”, Vis the nxn matrix of eigenvectors
of X'X, X is the rectangular diagonal matrix with non-negative real numbers on the diagonal
and the singular value decomposition (SVD) of X is: X= VEWT . The columns of ¥ represent
the "scores"” with respect to the PCs. This PCA transformation preserves the dimensionality in
the sense that the same number of PCs as original variables is obtained. For a reduced-
dimensionality representation of the data, X is projected into the reduced space defined by the
first / singular vectors of W)

y=w'x=xy" (2.15)
The matrix W of singular vectors of X is equal to the matrix /¥ of eigenvectors of the matrix
of observed covariances C = X X’
In NMR spectroscopy it is assumed that most of the variance in the original dataset can be

explained by a limited number of PCs. Therefore, the method is often considered, when
analyzing MRS data, to reduce the multidimensional datasets to lower dimensions.
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Principal coordinate analysis

Principal Coordinate Analysis (PCO) also known as Multidimensional Scaling (MDS) is a
more general projection method than PCA as it can use any distance matrix. The method
explores the similarities and dissimilarities of data (Borg and Groenen, 2005). With MDS the
data are transformed by computing a matrix of item-to-item similarities/dissimilarities (=
distance matrix) and assigns for each variable a location in an N-dimensional space, where N
is specified a priori. MDS tries to find the main axes or principle coordinates (PCOs) through
this matrix. Thus, having n objects, the dissimilarity matrix is defined as:

d, d, .. 4,
dy, d v d

A=| Pt 922 2,n 2.16)
d,, d,n, .. d,,

where d,; is a distance function that computes the distance between the i and /" objects.

Then, MDS aims at finding n vectors x;, ..., x, by solving the following optimization
problem:

i 3|

where "0" is the distance function.

For some cost functions, minimizers can be stated analytically in terms of matrix
eigendecompositions.

2.3 Conclusions

In this chapter the preprocessing steps used in this thesis for improving the quality of the
MRS data, such as SNR improvement, frequency alignment, phase and lineshape correction,
eddy currents correction, water suppression and baseline correction are presented. Feature
extraction methods which either exploit the biomedical information embedded in the spectra,
or extract features based on their statistical relevance are summarized.



Chapter 3

Pattern recognition methods in MRS

This chapter reviews the pattern recognition methods considered in this thesis for MRS data
analysis. The supervised classification methods K-nearest neighbor, discriminant data
analysis, support vector machines and canonical correlation analysis are outlined in section
3.1. In section 3.2 a few unsupervised classification methods are presented. Firstly, the
clustering analyses method is briefly reviewed. Then, blind source separation techniques such
as independent component analysis, non-negative matrix factorization and convex analysis
methods are outlined and their behavior in NMR spectroscopic data analysis is discussed. A
few classification performance measures are introduced in Section 3.3. Finally, the possibility
of combining multimodal sources of information for improved classification and the modality
of visualizing the classification results are presented.

3.1 Supervised classification

Machine learning techniques are commonly considered in the analysis of NMR data.
Supervised classification uses a set of data defined a priori, called training dataset, and
produces a function or a model called a classifier or a regression function. In this sections K-
nearest neighbor (K-NN), linear discriminant analysis (LDA) and support vector machines
(SVM) algorithms, which are able to produce reliable classifiers in the analyses of NMR
spectroscopic data, are described. A special case of supervised classification is a model based
canonical correlation analysis (CCA) approach, which uses a model defined a priori from a
training set.

3.1.1 K-nearest neighbor

The k-nearest neighbor algorithm (K-NN) classifies objects by computing the distance
between two objects using a distance function (Duda et al., 2001). Thus, having two objects, x
and y, composed of N variables/features, such that x = {xl X N} and y = {)’1 Y }, we can

compute the distance between them using the function d(x,y). Most commonly the Euclidian
distance is considered:

53
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N
dg(x,0) =D xi =y} EB))
i=1

When using the K-NN algorithm, data normalization is suggested as preprocessing step in
order to avoid that the variable with the largest scale dominates the distance measure.

3.1.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is a statistical technique which finds a linear combination
of features which best separate two or more classes of objects. Thus, for comparing the
correlation between variables and the class label, the N-dimensional input vector x is
projected onto a line (Fisher, 1936):

y=wx 3.2)

where y is a scalar and w is a weight vector. Considering 3" as a threshold, we classify y as
class 4 if y >1™ and as class B, otherwise. w is chosen to maximize the criterion J(w):

T
w'Spw

J(w) = (3.3)

T
w' S, w

where Sy is the between-class covariance matrix and Sy is the total within-class covariance
matrix, as defined in (Fisher, 1936).

3.1.3 Support vector machines

Support vector machines (SVM)s are a group of supervised learning methods that can be
applied to classification or regression. The technique was originally developed for binary
classification, but multi-class extensions are possible (Weston and Watkins, 1999). The idea
behind SVMs is to map the original data points from the input space to a high dimensional
feature space so that the classification problem becomes simpler in the feature space, by
constructing a hyperplane with maximal distance between the two classes. Thus, the SVM



55

training algorithm builds a model which is a representation of the input points in space and
based on this model it assigns the new data into one class or the other.

Nt

Given a set of training data {(x",y")}i:l, where x' vectors are the input data and

y' € {~1,+1} are the class label, SVM estimates a model of the form:

f(x)= sign(wT(D(x) +b) (3.4

where @ denotes the function considered for feature mapping the N-dimensional input vector

x from the input space to the Nf-dimensional feature space (Vapnik, 1998). w and b are
unknowns. A data point x is assigned to the first class if ' (x) =+1 or to the second class if

fx)=-1.

3.1.4 Canonical correlation analysis

Canonical correlation analysis (CCA) was developed by Hotelling (1936) and is a multi-
channel generalization of ordinary correlation analysis, which quantifies the relation between
two random variables, x and y, by means of the so-called correlation coefficient:

p= Covlx, y] 35)

NGREAR

with the correlation coefficient, p , a scalar taking values between -1 and 1. Cov stands for

covariance and V for variance. The term “canonical” refers to the coordinate system in which
the correlation is measured.

For zero mean variables Eq 3.5 reduces to:

E[x*y]

P :—E - *E[ 2] (3.6)

where E stands for the expectation of a random variable. Being a multivariate method, CCA
can be applied to multichannel signals. Thus, assuming two zero-mean multivariate random
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vectors x =[x,,...,x,]" andy=[y,,...,», 1", where the superscript T denotes the

transpose. One can define from these two vectors the following linear combinations of the
components of x and y, which represent two new scalar random variables X and Y :

T
X:a)xlxl +oto, x, =0 x
’ 3.7)
Y—a)y Wt tw,y, =0,y
CCA computes the linear combination weight coefficients @, =[a)X1,...,wxm]T and
, = [a)y1 NNO ]T , known as regression weights, that maximize the correlation between
X and Y. Then, p becomes:
T T T
E[(a)x xX)* (@, y)] - o, C,0, 38

B \/El(a)fx)zl* El(wfy)zj _ \/(a)yfcxxwx )(wicyywy)

C,, is an (mxn) covariance matrix with the covariances between the variables in X and Y as
elements. C,, and C,, are the corresponding matrices for the covariances between the variables
within X and Y, respectively. It is possible to find min(m, n) pairs of variates, each
maximally correlated, subject to the constraint that each pair is uncorrelated with the pairs that
precede it.

In the standard CCA, the regression weights may take both negative and positive values. Non-
negativity constraints on @, and @, can be imposed (Friman, 2003). Good detection

performance can be obtained using a non-negativity constrained CCA, as shown in (Friman,
2003; De Vos et al., 2007).

CCA can also be considered for solving multivariate dataset problems by using a data driven
approach (Correa et al., 2008, 2010; Li et al., 2009) or can be used to decompose one dataset
into contributing sources in a BSS manner (De Clercq et al., 2006). For this, certain
assumptions must be valid (De Vos, 2009). In this thesis the restricted CCA algorithm, with
non-negativity constraints, proposed by (Friman, 2003) is used in order to compare two
different datasets by quantifying the relation between them by means of correlation
coefficients.



57

3.2  Unsupervised classification

When no training datasets along with the data class labels are available a priori,
unsupervised learning techniques may be considered to describe the classes/groups within the
data. One such technique is cluster analysis where the classification is based on some
common properties, such as the similarities between the data within the same group and
the dissimilarities between the data belonging to different groups. Blind source
separation techniques may also be used for the unsupervised classification of MRS data
as described bellow.

3.2.1 Cluster analysis in MRS

Cluster analysis is a form of unsupervised learning in the sense that the algorithm tries to
partition a set of objects in more subsets in an optimal way, according to some common
properties without any knowledge of group membership. The purpose is to make each
subset (or cluster) as homogeneous as possible so that all objects in it have similar
properties, while objects in different clusters should be as dissimilar as possible.

K-means clustering is predominantly used in a wide range of medical applications
because of its simplicity and wide availability in standard software packages (Hartigan
and Wong, 1979; Tavazoie et al., 1999; Rosen et al., 2005).

Given a pre-specified number £, the k-means algorithm partitions the dataset into &
subsets (clusters C;...C;) by iteratively optimizing the sum, over all clusters, of the
within-cluster sums of object-to-cluster-centroid distances:

k
§=2 > dles). (3.9)

i=1 xeC;

where d(x,u,) is the distance between x, an object in cluster C; and 4, the centroid of

C; (i.e., the average of all objects in the cluster). The choice of the distance measure,
which will determine how the similarity of two objects is calculated, is important since it
will influence the shape of the clusters, as some objects may be close to one another
according to one distance and farther away according to another. In clustering the
following distances are commonly considered: Euclidean distance, Mahalanobis
distance, cosine distance, correlation distance, Hamming distance.
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Cluster validation techniques can be used to measure the quality of clusters on the basis
of the definition that objects within one cluster are similar to each other, while objects in
different clusters are dissimilar with each other. In section 3.3, the validation techniques
considered in this thesis are reviewed.

3.2.2 Blind signal separation

Blind source separation (BSS) techniques are often used in signal processing to extract a set
of source signals from a set of mixed signals and to estimate the contribution of these sources
to the measured mixture. There are different methods for blind signal separation, such as
principal components analysis (PCA), independent component analysis (ICA), dependent
component analysis (DCA), non-negative matrix factorization (NNMF), low-complexity
coding and decoding, stationary subspace analysis. Because many data are by their nature
non-negative, as for instance color intensities, chemical concentrations, frequency counts,
etc., non-negativity is an important constraint that can be considered when analyzing these
data. Therefore, since magnitude spectra, as well as the metabolite concentrations estimated
from MRS data are non-negative data, in this thesis the focus lies on considering BSS
techniques which are able to impose non-negativity constrains.

3.2.3 Non-negative matrix factorization

Non-negative matrix factorization (NNMF) is a mathematical technique that reveals hidden
factors within a dataset of signals. It is also known under the name self modeling curve
resolution (Lawton and Sylvestre, 1971) or positive matrix factorization (Paatero and Tapper,
1994). Given a matrix, X, with NNMF, X is factorized into two matrices, 4 and S. Other
methods, such as vector quantization or principal component analysis (PCA), can be
understood as factorizing a data matrix, as well. These methods are subject to different
constraints such as “winner-takes-all” constraint, which results in clustering the data into
mutually exclusive prototypes, with vector quantization, or orthogonality constraint for PCA.
NNMF differs from these methods by constraining the factors 4 and Sto be non-negative
while minimizing the cost function:

F(4,8)=|Xx - 45|}, with 4,5>0 (3.10)

Different cost functions can be considered. Commonly, the squared error, Frobenius norm and
an extension of the Kullback-Leibler divergence to positive matrices are considered (Lee and
Seung, 2001). Other approaches that propose alternative cost function formulations include
but are not limited to (Guillamet et al., 2001; Wang et al., 2004; Cichocki et al., 2006; Hamza



59

and Brady, 2006; Pauca et al., 2006). Each approach leads to a different NNMF algorithm,
usually minimizing the cost function using iterative update rules.

For solving the optimization problem in Eq. 3.10 one may consider alternating least squares
algorithms (ALS) (Paatero and Tapper, 1994; Sajda et al., 2004), gradient descent algorithms
(Chu et al., 2004; Lee and Seung, 2001) or multiplicative update algorithms (Lee and Seung,
1999, 2001). In (Lin, 2005) the use of a projected gradient bound-constrained optimization
method seems to have better convergence properties.

In the standard NNMF algorithm, 4 and S are initialized with random non-negative values
before the iteration starts. Alternate approaches for the algorithm in order to speed up or
influence convergence to a desired solution have been proposed (Wild et al., 2003).
Additionally, various authors have imposed additional constraints on 4 and/or S such as
smoothness (Pauca et al., 2004; Chen and Cichocki, 2005, Sen and Yuntao, 2009) or sparsity
(Hoyer, 2004, Kim and Park, 2007, 2008). The inclusion of such constraints is motivated by
the problem itself and often reflects the need to compensate for the presence of noise or other
data degradations in X. The additional constraints are typically considered via penalty terms.
Thus, the cost function in Eq. 3.6 becomes:

F(A4.8)=||X = AS[, +aC, (4)+ BC, (S) (.11)

where C;(4) and C,(S) are the penalty terms introduced to impose the additional constraints
over 4 and S, and a and f are regularization parameters to balance the trade-off between the
accuracy of the factorization and the constraints.

The product AS is an approximate factorization of rank at most k. Usually & is chosen such
that k << min(m, n) (Berry et al., 2006). An appropriate decision on the value of & is critical
in practice and the choice of k is mostly problem dependent.

3.2.4 Independent component analysis

Independent component analysis (ICA) is a special case of blind source separation method in
which the goal is to find a linear representation of non-Gaussian data so that the components
are statistically independent, or as independent as possible. Through time the method found
many applications and implementations and nice reviews of the method are provided in
(Hyvérinen et al., 2001; Amari and Cichocki, 2002).

Classically, having an mxn matrix X = (x;, x5, ..., X,,) T with ICA we can decompose X= A4S,
where S contains the source signals as its rows S = (s, 55, ..., sl and 4 is the mxk mixing
matrix. The cost function can be optimized with various algorithms. Usually, one of the
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following four different criteria (Yuan, 2009) are considered: the maximization of non-
Gaussianity, such as FastiICA (Hyvérinen and Oja, 1997, Hyviérinen, 1999), minimizing
mutual information (Zheng et al., 2006), maximum likelihood estimation (includes the so
called infomax principle (Bell and Sejnowski, 1995) and natural gradient algorithm (Bell and
Sejnowski, 1995; Amari, 1998; Oja, 1999)) and tensorial methods (Cardoso, 1989, 1990,
1999). ICA imposes the assumptions/restrictions of independence and/or non-Gaussianity.

Independence. Two variables x; and x, are considered independent if the information on the
value of x; does not give any information on the value of x,, and vice versa. Statistically
speaking, independence can be defined by the probability densities. Thus, x; and x, are
independent if and only if their joint probability density function (pdf), p(x;,x;), is the
product of two marginal probability density functions:

p(x1,%,) = p(x)) p(x,) (3.12)

This definition can be extended for any number # of random variables, x;... x ,, in which case
the joint density must be a product of n terms.

Uncorrelation can also be seen as a weaker form of independence. For this, x; and x, are said
to be uncorrelated if their covariance is zero. If the variables are independent, they are
uncorrelated, but uncorrelation does not imply independence. Because of this, many ICA
methods give uncorrelated estimates of the independent components since this reduces the
number of free parameters and simplifies the problem (Hyvérinen and Oja, 2000).

Non-Gaussianity. From the different cost functions that can be considered, the most common
are based on maximizing non-Gaussianity. A quantitative measure of non-Gaussianity is
classically given by kurtosis or the fourth-order cumulant. Another measure of non-
Gaussianity is given by negentropy.

Since the criterion of maximal non-Gausianity can be used as a measure of statistical
independence, a vector w that maximizes the non-Gaussianity of w’ X under one of the
measures mentioned above is computed. Thus, each local maximum for the non-Gaussianity
of w” X gives us one of the independent components.

Before applying the ICA algorithm, the observations (the rows of X) are usually assumed to
be “white” or are transformed to be so. Through whitening, X is linearly transformed so that
we obtain a new matrix whose rows are zero-mean, uncorrelated and their variances equal
unity.

Additional constraints. Since in the real world many data are non-negative, additional non-
negativity constraints on the linear ICA model can be added. Plumbley proposes in a series of
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publications the combination of non-negativity and independence assumptions on the sources,
referred to as non-negative independent component analysis (Plumbley, 2001, 2002, 2003,
2004a, 2004b). The concept proposed by Plumbley is that a “well-grounded” non-negative
source, s, has non-zero pdf all the way down to zero. For this, using the probability function,
Pr(.), asource is called non-negative if Pr(s < 0) = 0 and well-grounded if Pr(s < 6) > 0 for
any 0 > (. One approach to find the sources is to whiten the non-zero-mean observations and
make a rotation to positive factors; the obtained factors can then be seen as the sought sources
(Plumbley, 2002). In (Oja and Plumbey, 2004) an orthogonal rotation of the whitened
observation vector into non-negative outputs that give a positive permutation of the original
sources is proposed and a gradient-based algorithm operating on pre-whitened data is used. A
modified version of the FastiCA Algorithm (Hyvérinen and Oja, 1997) for non-negative ICA
with constraints that the sources are non-negative with probability one was also proposed
(Yuan and Oja, 2004).

Although the classical application of the ICA is as blind source separation technique, in NMR
the method often finds its application as a feature extraction technique (Szabo de Edelenyi et
al., 2005) which is motivated by the theory of redundancy reduction.

3.2.5 Convex analysis of mixtures of non-negative sources

Convex analysis of mixtures of non-negative sources (CAMNS) is a recently developed non-
negative BSS method (Cha et al.,, 2008). CAMNS is deterministic, requiring no source
independence assumption and accounts for sparsity. The development is based on a special
assumption called local dominance. This assumption, closely related to sparsity, states that
each source exhibits a non-zero value for a certain feature for which all the other sources have
a zero value. Under local dominance, the BSS criterion becomes a convex analysis problem,
namely finding the extreme points of an observation-constructed polyhedral set. This problem
can be solved using linear programming, and leads, in this setting, to a unique source
separation with probability one. Thus, the source signals can be perfectly identified in a blind
fashion (Cha et al., 2008).

Summarizing from (Cha et al., 2008), the CAMNS method first constructs from the data
matrix X (whose rows, transposed, are denoted here by column vectors x;) the mean vector

1< . - o
d=— E X; and a matrix containing the first k-1 principal components of the mean
m
i=1

centered sample covariance matrix, namely the matrix of eigenvectors:

C=l‘ll(UUTl%(UUle‘]k—l(UUT)J (3.13)
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where U = [xl -d,.,x, —d ] , and ¢;(UU") stands for the eigenvector corresponding to the

i™ largest eigenvalue of UU”. Then the algorithm proceeds at finding the extreme points of the
polyhedral set, Q, containing all non-negative sums between the mean vector ¢ and the linear
combinations of the first k-7 principal components, which are the columns of C. Due to the
local dominance assumption on the sources, it can be proven that the & extreme points of Q
are precisely the k non-negative sources that one may seek, as described in (Cha et al., 2008).

3.3 Performance measures

A common problem of unsupervised data classification is estimating the correct number of
classes, k, existing in a dataset. For BSS experiments, the number of the sources, k, to be
extracted has to be defined a priori. In defining £ value, one approach is to test the
performance of the proposed method for various values of & and setting & to that value for
which best performance was obtained (Croitor Sava et al., 2011b). Clinical information
regarding the number of groups expected in the data can also be considered in defining .

Most clustering algorithms also require a user-defined input parameter k. Therefore is
essential to have a correct estimation of k. The general approach to automatically determining
this value is to estimate the quality of each solution provided by various k values and select
the value of k that gives the best performance according to a quality criterion. Several
approaches have been proposed to measure clustering performance for various k values. The
performance measure methods considered in this thesis for estimating the correct number of
classes to consider in the classification are introduced below.

3.3.1 Krzanovski-Lai index

The Krzanowski and Lai index (KL) is defined as (Krzanowski and Lai, 1985):

Diff,
KL(k) =|—2%—
Dlﬁpkﬂ (3.14)
with
Diffy = (k=" W, —k*""W, (3.15)

where m denotes the number of features in the dataset and W, is calculated as the within-
group dispersion matrix:
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k
W=D D (x; =)y —¢)' (3.16)

i=l x;€C;

" cluster, and ¢; denotes the centroid of the i

cluster. A value of k is optimal if it maximizes KL (k).

with x; representing an object assigned to the j

3.3.2 The weighted inter-intra index

With the weighted inter-intra index, the optimal number of clusters within a given dataset is
computed by maximizing intra-cluster similarity (Strehl, 2002; Strehl and Ghosh, 2003):

INTRA(X, A,i) = 2 ZS(xa,xb) (3.17)
(=D ) A Tbsa

and minimizing inter-cluster similarity:

INTER(X, A,i, j)= ! D S(x,0 %) (3.18)

nin A=t Ay =]

where i and j are cluster indices, n; and n; is the number of objects in the clusters i and j,
respectively, A is the n-dimensional label vector, and S(x,,x;) is the similarity between

two data-points x, and x, computed based on the Euclidian distance.

The quality measure is defined based on the ratio of weighted average inter-cluster to
weighted average intra-cluster similarity:

n;

. .
p— an INTER(X, A,i, /)
i jefl,..i-Li+l,. .k}
k
zn,. * INTRA(X, A1)
i=1

k
P

P (X, ) =1--

(3.19)
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Here, ¢Q €[0,1] with ¢Q = (0 meaning that the objects within a cluster are on average not

I . Q .
more similar than samples from different clusters. On the other hand, ?% =1 describes a
clustering where every pair of samples from different clusters has the similarity of zero and at
least one sample pair from the same cluster has a non-zero similarity.

3.3.3 Silhouette index

Silhouette is a technique (Rousseeuw, 1987) that computes the compactness and separation of
clusters by calculating the silhouette width for each object, average silhouette width for each
cluster and overall average silhouette width for a total dataset, X. The optimal number of
clusters is the one that gives the largest overall average Silhouette value (Kaufman and
Rousseeuw, 1990; Chen et al., 2002). Thus, each cluster can be represented by a so-called
silhouette, S(i), which is based on the comparison of its tightness and separation, and is
computed as:

500y =D = a()

= (3.20)
max{a(i),b(i)}

where a(i) is the average dissimilarity ofthe i"-object to all other objects in the same
cluster; b(i) is the minimum of average dissimilarity of the i"-object to all objects in another
cluster. The dissimilarity is computed as the squared Euclidean distance between points in X.
S(i) takes values in the interval [-1,1]. If the value is close to 1, the object is assigned to the
appropriate cluster, while a value close to -1 means that the object is wrongly assigned and is
somewhere between the clusters. A value that is close to 0 means that the object is equally far
from more clusters.

3.3.4 Homogeneity and Separation index

Homogeneity index computes the compactness of the cluster as an average distance between
the objects in the cluster and its respective centroid:

Hom = NLOZD(OI- ,C(0,)) (3.21)
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where o; is the i object and C(o;) its centroid, N, is the total number of objects and D is the
distance function. In this thesis the Euclidian distance was used.

Separation index is a measure of between-cluster variance computed as the weighted average
distance between clusters:

Sep = ;z NN;D(C;,C)) (3.22)
Z cilVej iz
i#j

where C; and C; are the centroids of i and j‘h clusters, and N;, N; are the number of objects
in the i and j™ clusters, respectivly.

Homogeneity and separation is a variation of the two indices suggested by (Shamir and
Sharan, 2000):

HS =(1-4/N, xc Y(Hom — Sep) (3.23)

o

where N, and N, are the total number of clusters and total number of objects, respectively.
Decreasing homogeneity index and increasing separation index suggest better clusters, thus
this criterion is based on the minimization of HS.

3.3.5 Kruskal-Wallis test

The Kruskal-Wallis test is a one-way analysis of variance by ranks (their significance in
separating between groups) (Kruskal and Wallis, 1952). It is a non-parametric alternative to
the well-known one-way analysis of variance between groups (ANOVA) (Hollander and
Wolfe, 1973; Neter, 1996). Unlike ANOVA, it does not assume a normal distribution for the
data. The hypotheses for the comparison of two independent groups are: the null hypothesis of
the test is that the samples come from identical populations (with equal medians); the
alternative hypothesis is that the samples come from different populations.

The Kruskal-Wallis test statistic is formulated as:
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g -  —=\2
ziZl nl(}/; - r)
2
g n; —
Zizl ijl(rij - V)

p=(N-1) (3.24)

where n; denotes the number of samples in group i, g is the total number of groups, r;
represents the rank of sample j in group 7 after ranking all the cases of all groups, 7, is the

average of the ranks r; over all samples j in group i, N is the total number of samples across
__ N+1
all groups and: 7= R When two or more values are equal, each of them receives a

(noninteger) rank equal to the average of the integer ranks at which they are tied. Commonly,
p <0.01 suggests that the differences are statistically significant.

3.3.6 Tukey multiple comparison

In a one-way analysis of variance, one may test the hypothesis that several groups are all the
same, against the general alternative that they are not all the same. Sometimes this approach is
too general and one may need information about which pairs of means are significantly
different and which are not. A test that can provide such information is called a multiple
comparison procedure. This procedure provides a comparison interval. When the intervals
overlap, there is no statistically significant difference between the groups, while if the
intervals are disjoint, the difference can be considered as statistically significant.

Tukey's test is a single-step multiple comparison test, generally used in conjunction with a
one-way analysis of variance analysis in order to find which means are significantly different
from one another (Tukey, 1949).

Tukey's test is based on a formula very similar to that of the t-test, except that it corrects for
experiment-wise error rate:

Y, Yy
=4 "B 3.25
q, SE (3.25)

where Y is the larger of the two means being compared, Yy is the smaller of the two means
being compared, and SE is the standard error of the data.

The g, value can then be compared to a g value from the studentized range distribution
(Pearson and Hartley, 1970). (A studentized range distribution is a continuous probability
distribution that arises when estimating the mean of anormally distributed population in
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situations where the sample size is small.) If the g value is larger than the g¢;.. value
obtained from the distribution, the two means are said to be significantly different.

3.4 Software

In this thesis, the supervised classifiers: K-NN, LDA and SVM were developed using Matlab
Statistics toolbox. For the CCA implementation Matlab code from the developer (Friman,
2003) was considered. K-means clustering analysis was performed using the kmean function
implemented in Matlab Statistics toolbox. For applying the proposed BSS methods we
considered: an NNMF implementation in Matlab (Kim and Park, 2008), available online at
http://www.cc.gatech.edu/~jingu; an adapted version for MRS spectra of the nICA code (Oja
and Plumbley, 2004), available online at http://www.cs.helsinki.fi/u/phoyer and the CAMNS
program package (Cha et al., 2008) available at http://mx.nthu.edu.tw/~tsunghan, which
relies on the convex optimization software package SeDuMi (a free convex optimization
solver (Sturm, 1999)).

To compute the validity indices: KL index, weighted inter-intra index, silhouette index and
homogeneity and separation index a Matlab toolbox for estimating the number of clusters
(http://www.mathworks.com/matlabcentral/fileexchange/13916) was considered.

SPID is a matlab graphical user interface (GUI) developed in our department which provides
the user with tools capable to simulate, preprocess, process and classify in vivo and ex vivo
MRS signals. AQSES-MRSI quantification method is embedded in SPID.

3.5 Fusion of several MR modalities

A large number of studies confirmed the power of in vivo MRS and MRSI spectroscopy
techniques in disease diagnosis and prognosis. Ex vivo techniques, such as HR-MAS and high
resolution MRS, have shown also to provide valuable information since, due to their high
spectral resolution, they allow the identification of a high number of metabolites present in the
data. Other NMR modalities, such as MRI imaging, diffusion- and perfusion-weighted MRI
and functional MRI have gained lately much interest. Although all these NMR modalities are
mostly considered separately for disease classification, the fusion of several NMR techniques
can bring added value to the classification. As shown in (Croitor Sava et al., 2011d) in vivo
and ex vivo MR spectroscopy and MR imaging techniques can complement each other.

The possibility of fusing multimodal NMR sources of information for brain tumor
classification has firstly been tackled by Szabo De Edelenyi who proposes the use of a pattern
recognition technique that combines MRI with spectroscopic information (Szabo De Edelenyi
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et al., 2000). Later, various MRI image variables are fused with metabolic information for
MRSI data classification (Simonetti et al., 2005; Laudadio et al,. 2005a, 2005b, 2008; Devos
et al., 2005; De Vos et al., 2007; Luts et al., 2009a). These studies were motivated by the
nature of MRSI data, which allows one to explore both spatial and metabolic information.

Another application where MRI and MRSI data can be combined is to consider MRI as
additional information to estimate to what extent two adjacent voxels resemble each other.
This information can help to decide how close the parameters of two adjacent voxels are, and
to what extent a neighboring voxel influences the voxel under investigation. In (Laudadio et
al., 2005b) for the classification of each MRSI voxel, information coming from its
neighboring voxels was also considered. Still, in Laudadio’s study no difference was made
between two adjacent voxels belonging to different tissue types. In (Kelm, 2007), the author
proposes to add an additional term in the cost function to ensure a certain smoothness in the
parameter estimates, with a new regularization factor which finds a trade-off between the
squared residual errors and the smoothness of the parameter’s spatial maps. Moreover, based
on the location of the voxels and the tissue type of each voxel, one can increase the accuracy
of the feature extraction method for MRSI data by imposing proximity constraints on the
spectral parameters within a MRSI grid based on MRI information. In (Croitor Sava et al.,
2011a), optimized starting values and a penalty term that promotes a spatially smooth spectral
parameter map were proposed. This approach showed to provide improved metabolite
quantification results (Kelm, 2007; Croitor Sava et al., 2011a) and therefore more reliable
metabolite estimates to be considered in the MRSI data classification.

In general, when working with supervised classification methods, the classifier has to learn
the significant features, by means of a training procedure tuned to separate the different
classes. Thus, in order to obtain reliable classifiers we need large and representative datasets
for each class. Nevertheless, some clinically important tumors are sufficiently rare that even a
large multicentre study would be unlikely to gather sufficient cases to define their metabolite
profiles using in vivo MRS. Therefore, for rare brain tumors little is known biologically and a
diagnosis on the basis of morphologic and metabolic appearance alone is controversial.
Nowadays, large collaborative programmes exist for collecting frozen tissue from such
tumors at surgery and placing them in a tumor bank. Biological studies using frozen tissues
from tumor banks have been highly successful and HR-MAS could form part of such a study.
In this context fusing HR-MAS information, MRSI, and MRI measurements can represent
another promising approach to provide improved detection and classification of brain tumors
(Croitor Sava et al., 2008; 2011d). These sources can complement each other both for the
situation when we are confronted with a lack of information available for building a classifier,
as well as for the situation when we have access to different sources of information and we
use all these sources in building a robust classifier. In both circumstances, HR-MAS
information can act as an added value, since combining multimodal heterogeneous sources of
information can improve the classifier performance (Croitor Sava et al., 2011d).
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3.6 From MRSI to nosologic imaging

The notion of nosologic image was first introduced in 2000 (Szabo De Edelenyi et al., 2000)
to better visualize the classification results of an MRSI grid. As its term reflects, (nosology (in
Greek Nosos = Disease) is a branch of medicine that deals with classification of diseases)) it
refers to an image which indicates, using colors, the tissue types behind each MRSI voxel.
These images can be easily interpreted by radiologists and physicians and therefore can
improve the accuracy of the diagnosis, see Figure 3.1. Through time several authors
considered visualizing the MRSI classification results using nosologic imaging (Szabo De
Edelenyi et al., 2000; Simonetti et al., 2005; Laudadio et al,. 2005a, 2005b, 2008; Devos et
al., 2005; De Vos et al., 2007; Luts et al., 2009a; Kelm et al., 2007). In all these studies both
metabolic information coming from MRSI and imaging information from MRI were
considered in the classification.

Nosological image

Figure 3.1 The illustration of a T, weighted image of a brain affected by oligodendroglioma
grade III (left). The tumor lesion is localized in the left middle area of the MRSI grid. Based
on the MRSI information available from this patient each voxel is classified and the results
are transformed into a nosologic image (right), where red and yellow represent grade III and
grade Il glioma, respectively. Dark blue stands for normal tissue and light blue for
cerebrospinal fluid.

Nosologic imaging has also been used to visualize the results of a classification approach
where multimodal sources of information coming from in vivo and ex vivo MR data were
considered (Croitor Sava et al., 2011d). Furthermore, nosologic images were drawn based on
the abundance maps, reflecting the presence of necrosis, viable tumor cells or infiltrations in
the MRSI grid, extracted using BSS techniques as described in details in Chapter 6, Section
6.2.
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3.7 Conclusions

In this chapter an overview was provided of different algorithms that are used in the thesis for
the classification of in vivo and ex vivo MR data. Using supervised and unsupervised
classification methods as the ones described in this chapter one can obtain very accurate
classification results. Nowadays in most hospitals data from an increasing number of
modalities (MRS, MRSI, MRI, HR-MAS, etc.) are acquired. By means of advanced pattern
recognition methods, such as CCA, we can combine them to improve the classification
performance. BSS methods that respect the non-negativity of the MRS data are also gaining
more and more interest these days since they can provide not only information regarding the
tissue type present in the data, but also the abundance of each tissue type. To measure the
performance of the classification and to identify the most appropriate number of classes, when
this value has to be given a priori to the classification, several validity indices and
performance tests are proposed. Moreover, nosologic images, which allow a user friendly
visualization of the results, are introduced.



Chapter 4

AQSES-MRSI for the quantification
of MRSI data using spatial
information

Magnetic Resonance Spectroscopic Imaging (MRSI) provides MR spectra from
multiple adjacent voxels within a body volume represented as a 2 or 3 dimensional
matrix, allowing measurement of the distribution of metabolites over this volume.
This chapter' describes an advanced metabolite quantification method for MRSI
data, AQSES-MRSI, in which the available spatial information is exploited. A
nonlinear least squares algorithm, where prior knowledge is included in the form of
proximity constraints on the spectral parameters within a grid and optimized
starting values, is proposed. A penalty term that promotes a spatially smooth
spectral parameter map is added to the fitting algorithm. This method is adaptive, in
the sense that several sweeps through the grid are performed and each solution may
tune some hyperparameters at run-time. AQSES-MRSI has been tested on simulated
MRSI data with several types of disturbances and on short echo time in vivo proton
MRSI data. Moreover, AQSES-MRSI performance is compared against AQSES,
QUEST and the quantification software LCModel.

4.1 Introduction

As opposed to single-voxel MRS measurements, the MRSI signals usually have a lower
quality, due to the spatial/spectral trade-off for the available measuring time. Thus, retrieving
accurate estimates of the most relevant metabolite concentrations remains a challenging
computational task because of magnetic field inhomogenieties, relatively low signal-to-noise
ratio (SNR) and physiological motion, compromising spectral resolution and leading to

! Croitor Sava AR, Sima DM, Poullet JB, Wright AJ, Heerschap A, Van Huffel S. Exploiting spatial
information to estimate metabolite levels in two-dimensional MRSI of heterogeneous brain lesions. NMR
in Biomedicine. 2011; 24(7): 824-835.

and

Sima DM, Croitor Sava A, Van Huffel S. Adaptive alternating minimization for fitting magnetic
resonance spectroscopic imaging signals. Recent Advances in Optimization and its Applications in
Engineering. Eds. M. Diehl, F.Glineur, W. Michiels., Lirias number: 265005. 2010: 511-520.
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strongly overlapping metabolite peaks. Since MRSI provides measures of multiple
metabolites simultaneously at each voxel, there is furthermore great interest in exploiting the
available spatial information, as this is expected to improve the accuracy of quantification
compared to processing the signals on an individual voxel basis.

Incorporating spatial prior knowledge to optimize processing of MRSI data has been
addressed previously (Pels, 2005; Kelm, 2007; Bao and Maudsley, 2007). The prior
knowledge that has been considered so far includes the assumption that the signals are
perfectly aligned in frequency, and/or the phase of the resonances is constant over the grid
under proper preprocessing (Pels, 2005), that the frequency, damping and phase parameters
have spatially smooth variations (Kelm, 2007), that the metabolite composition of each tissue
type is relatively constant over a local region, and MRI-derived tissue distribution functions
can be used as prior knowledge for MRSI quantification (Bao and Maudsley, 2007). In all
these approaches a common quantification solution is formulated for the whole MRSI grid
assuming that many characteristics of the signals within the same grid are related. Still,
differences in the signals may appear due to the heterogeneity of the tissue under investigation
and inhomogeneities in the magnetic field applied in the scanner. It is well-known that some
metabolite concentrations differ with tissue type. For example the compound N-Acetyl
Aspartate (NAA) is reduced in voxels containing tumor tissue as compared to normal tissue
(Howe et al., 2003b; Magalhaes et al., 2005). Moreover, T2 relaxation times of metabolite
spin systems may also depend on tissue type (Frahm et al., 1989; Oros-Peusquens et al., 2008)
and pathology (Kamada et al., 1994). At the same time, the spectral parameters such as
damping and frequency are magnetic field-dependent. The process called shimming aims to
obtain a constant magnetic field throughout the MRSI grid. Although an optimal shimming
result is not guaranteed, it is reasonable to assume that there are no abrupt changes in the
magnetic field between neighboring voxels and that possible variation in the damping and
frequency parameters proceed smoothly over the considered MRSI grid. Exceptions could be
the occurrence of abnormal features strongly affecting susceptibility, such as bleeds or cysts
or for voxels at sharp boundaries like the borders of ventricles.

AQSES-MRSI is a novel approach: an alternating nonlinear least squares algorithm for fitting
and modeling MRSI data, in which both the parameters’ variability and similarity within an
MRSI grid are considered. In the quantification of all voxels, penalties are added to promote,
within neighboring regions, smooth parameters maps for frequency shifts and damping
corrections, while allowing complete freedom to the metabolite amplitudes (metabolite
concentrations). Due to the heterogeneity of the tissue that characterizes brain tumors, and to
the variations induced by magnetic field inhomogeneities, a common optimization over the
whole MRSI array is not explicitly formulated, as opposed to previous studies (Pels, 2005;
Kelm, 2007; Bao and Maudsley, 2007). A dynamic approach, in which the bounds on the
relevant values of the parameters are iteratively adapted, and/or the parameters of the model
function take at each iteration a new starting values for each voxel, is considered. To assess
the quality of the AQSES-MRSI method, an extensive Monte Carlo simulation study and
several in vivo MRSI examples of brain tumor patients are presented.
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4.2 The proposed method

AQSES-MRSI is a fully automated method to estimate metabolite levels in MRSI data, which
includes spatial information of neighboring voxels. It is an important extension of the time-
domain quantification method AQSES (Accurate Quantitation of Short-echo Time Magnetic
Resonance Spectroscopic Signals) (Poullet et al., 2007a) for MRSI data. AQSES-MRSI fits
the measured signal to a nonlinear model (Sima and Van Huffel, 2007), which is derived from
metabolite profiles that are measured in vitro or quantum-mechanically simulated. The
AQSES optimization problem, described in detail in Chapter 2, is further modified in order to
account for the spatial prior knowledge available when dealing with MRSI data. AQSES-
MRSTI’s enhanced performance with respect to the time-domain quantification methods
AQSES and QUEST, both working on a single-voxel basis, is demonstrated. An analysis of
MRSI data by LCModel software is also included for comparison reasons. The proposed
method is embedded as a plug-in to the in-house software SPID (Poullet, 2008), a Matlab®
(The MathsWorks™) platform for advanced spectroscopic signal preprocessing, processing
and classification.

4.2.1 Modalities of exploiting spatial information

If one considers a voxel ¢ within an MRSI grid of voxels, smooth parameter maps can be
locally measured at voxel ¢ by using the parameter value at the current location and the values
in a certain neighborhood. AQSES-MRSI starts by individually fitting each signal in the grid
using nonlinear least squares (Sima and Huffel, 2007; Poullet et al., 2007a). Then several
sweeps through the grid are performed until convergence. At each sweep spatial information
is taken into account in the fitting algorithm by imposing smoothness constraints in more
steps, outlined below:

1™ step: in this step changes are made to the starting values of the nonlinear

parameters, HC (vector containing damping corrections and frequency shifts for voxel c¢), to

be set to the median of the parameter values from the considered neighbors &, obtained in

5
the previous sweep (s = ,...,S, where S is the total number of voxels in the considered
neighborhood).

2" step: this step optimizes the bounds on the parameters’ variability. An extra box
constraint is added so that the parameters of the neighboring voxels do not present a high
variability. The upper and lower bounds of this constraint are imposed by tightening the
previous box based on the current information available in the neighboring voxels.

3" step: in this step spatially smooth parameter maps for the frequency shifts and
damping corrections are imposed. The nonlinear least squares problem is modified by adding
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a penalty term, which builds a sum over the squared distances between the parameters of all
neighboring voxels. The weight on the smoothness of individual parameters is adjustable.

Adaptive alternating minimization

The optimization problem is highly dimensional since in practice one may have grids of at
least 16x16 voxels and at least 10 metabolite signals in the basis set, leading to a total of more
than 5000 nonlinear variables. However, the objective function is a sum of squares, where
each term contains only a few variables. Thus, the total optimization problem is a natural
candidate for an alternating minimization procedure, where this type of subproblems is solved
for each voxel in several sweeps through the grid, until convergence.

In a statistical setting, this type of alternating minimization has been introduced in the field of
computer vision under the name iterated conditional modes (ICM). An extension of ICM to
MRSI data is proposed in (Kelm, 2007; 2011).

Alternating minimization algorithms are known to converge under very mild conditions
(Csiszar and G. Tusnady, 1984). Recently, convergence properties have been analyzed for the
situation when the problem statement slightly changes from sweep to sweep (Niesen et al.,
2009). In (Niesen et al., 2009) the variables are partitioned in only two sets, while here an
adaptive alternative minimization with a large number of subsets (one subset per voxel) is
applied. Slight changes in problem formulation are expressed, in our case, as modifications of
the hyperparameters of the problem. The new subproblem at each sweep, for each voxel, is
very similar to (Niesen et al., 2009), except that the box constraint may vary at each sweep,
and so do the regularization factors.

The convergence
The convergence measure is defined at each sweep i as:

@.1)

Where 0; ( p) is the estimated parameter p of signal / in sweep i, P is the number of

parameters per signal, L is the number of signals. The iterative algorithm continues until
C;<0.00!1 or a maximum of 10 sweeps is reached. Still we observed that the convergence is
typically reached in less than 10 sweeps.

Starting values of the nonlinear parameters

In the single voxel implementation of AQSES, it was found convenient to set to zero all the
initial values of the nonlinear parameters (frequency and damping corrections). In this way
the optimization starts with no spectral correction with respect to the signals from the
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metabolite basis set. The latter are assumed to be reasonably aligned to the in vivo signals. In
AQSES-MRSI spatial information is introduced by initializing the nonlinear parameters of the
voxel of interest with the median value of parameters in the previous sweep from the voxels
considered in the selected neighborhood area. The first sweep uses initial values equal to zero.

6! = median(6'™") @2)

i . . , i—1
where 6[’ represents the starting values of the nonlinear parameters at sweep i and 0;

represents the optimal parameters of the surrounding voxel s obtained at sweep i-/.

Spatial constraints

In the 2™ step an effective spatial constraint is introduced such that the parameters of the
neighboring voxels do not yield a high variability. AQSES itself uses soft constraints (i.e.,
reasonable bounds on the damping and frequency corrections) of the form
dy€l0,4,], fyel-A4;,A4,], where 4; and A, are small scalar values. Recall that the

nonlinear parameters represent corrections applied to the metabolite profiles. These soft
constraints can be written in vector form as a box constraint: 8, € [By,,,, B,, ] . The allowed

parameter variation in this step of AQSES-MRSI is bounded by the following interval:
i il i-1 5i-1 i-1
96‘ (S [05 —0{ Blow,gg +0{ Bup] (4.3)

where @ is a scalar value initially set to 0.25, 5;_1 is computed at sweep i as the mean of
the damping and, respectively, frequency of the voxels surrounding the voxel of interest and
estimated in the sweep i-/. The value of & " decreases with each sweep as O =a’i ,
where i is the sweep counter.

Penalty term

Finally, in the 3™ step, inspired by (Kelm, 2007), a penalty term over the parameter maps is
formulated. With AQSES-MRSI a complex optimization problem is considered by imposing a
trade-off between solving the minimization problem and minimizing the nonlinear parameters
variation within neighboring regions:

2
IRES 3
HEHWZM ()-5.0.) +0> > e fwe. -0,  w@a

t=t, 6.#06,
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where the signal ), (t) corresponds to voxel ¢ and the model )A/ . (t , 96 ) is considered as a

weighted sum of metabolite signals with nonlinear corrections 06. Spatial information is

introduced via the second term, called penalty term, which encourages a smooth solution for
the problem (Kelm, 2007). The penalty terms are multiplied by adjustable scalar penalty

parameters £, which account for the trade-off between an optimal fitting of the current signal
and the penalty.
07 is an estimate of the noise variance computed from the tail of the signal in the time

domain in voxel c. IB is a weighting scalar which gives the influence of the parameters QS

cs
on the parameters 00, as described below. W is a diagonal weighting matrix, with W €

REmKm " which accounts for the scale differences between parameters, where K is the number

of metabolite profiles and m is the number of parameters per metabolite. For example, for the
Lorentzian model, m=2 (damping and frequency), if one uses variable projection and solve
for amplitude and phase in closed form. Thus W can be used to adjust the weight on the
smoothness of certain individual parameter maps and even to turn off smoothing for some of
the parameters by using a zero weight. In summary, all the parameters in the penalty term,

E.,O : , Wand ,3 . » determine the trade-off between fitting the individual signals against

smoothing the parameter maps.

The spatial model

Following the work of (Laudadio et al., 2005), a sliding window method is applied, i.e., the
sweeps go through the voxels row-wise (a checker-board pattern or a spiral starting from the
center of the grid are also possible). In choosing the geometry of the neighborhood, different
models can be used for introducing spatial information in the optimization problem (Friman,
2003). Yet, based on the assumption that tissue and magnetic field inhomogeneities influence
the parameter maps, spatial constraints are further considered only within the voxels
surrounding the voxel of interest, restricting in this way the neighborhoods to small areas.
Throughout the 2D experiments the “3x3 spatial model” (the adjacent voxels plus voxels on
the diagonal are considered as neighbors, giving a total of 8 voxels (Friman, 2003), see Figure
4.1-a) is used. An extension to the 3D MRSI case could be possible. The selection of a fixed
neighborhood (Friman, 2003; Laudadio et al., 2005) can be a disadvantage, in particular for
very heterogeneous data. To overcome this limitation, an extra decision factor in the proposed

method, which makes the process of selecting the neighborhood more flexible, is

cs
introduced. In this way, AQSES-MRSI allows the user to account for both the similarities and
the variability within an MRSI grid.

The spatial information is taken into account via:

ﬁ __ pneighborhood IBtissue
cs — Mes cs (4.5)
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ighborhood . . . .
where ﬁ;ﬂg 0% is 0 or 1 depending on whether voxels ¢ and s are neighbors according

to, e.g., the “3x3 spatial model” for selecting the neighborhood area, see Figure 4.1 - a.

Figure 4.1 Visualization of the neighborhood regions (blue color) that is taken into account
in the spatial model for the parameter map of the voxel of interest (ved color). In a) the
neighborhood contains all the voxels selected with the “3x3” spatial model. In b) the
neighborhood contains only the voxels selected with the “3x3” spatial model and belonging
to the same tissue class.

tissue . . . . ..
,6 s is based on tissue information and reflects how similar two voxels ¢ and s are,

tissue

independently from spatial consideration. The higher O~ , the higher the influence of

voxel s on voxel ¢, in other words, the closer the parameters HC and QS should be. To

tissue
cs

tissue

tissue cps c e
= 1 if tissue type is similar, and O

s = 0 otherwise.

simplify, one can use

has to be available as prior information (Figure 4.1-b). It can be obtained in an prior step via
MRI segmentation or classification. This segmentation procedure is not part of this study.

Choosing the weighting matrix W
The diagonal matrix W, which accounts for the different scales and variability of the
parameters, can be used to adjust the smoothness of individual parameter maps. Let
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0 0
0w, 0
W =
0 .. W, 0
0 0o w

where W € R " Equal weights for all damping corrections and equal weights for all
frequency shifts are considered. Both for simulation experiments as well as for in vivo data W,
= 0.2 is used for the Lorentzian damping parameters and W, = 2 for the frequency maps
(Kelm, 2007).

Choosing the penalty parameters £,
The positive scalar parameters £ accounts for the trade-off between fitting the model )A/ . to

the signal ), in least squares sense and imposing the minimization of the penalty term. £ is

allowed to be adaptively chosen for each particular signal at each sweep by evaluating the

2
In-g

1 A
current residual sum of squares RSS =WZ| Ve (t)— Ve (t,HC)| and the current penalty

t=t,
norm penalty =||W(HC -0, )"; and setting €, = 0.1vRSS /| penalty, , which gives

90% importance to the fit and 10% importance to the penalty.

4.3 Experimental results using simulations and
real-life examples

In this section, to evaluate the robustness and performance of the method, a simulation and an
in vivo experiment were designed. Firstly, for several types of disturbances, Monte Carlo
studies were performed on a series of MRSI simulated signals grouped in simulated MRSI
grids of dimension 3x3 voxels. Tests on real life MRSI data are also performed and the
method is compared with AQSES, QUEST and LCModel software.
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4.3.1 Simulation experiments

The simulated MRSI signals were obtained as a linear combination of 11 metabolite profiles,
which were individually shifted in frequency and broadened as described in the previous
section: nine measured metabolite profiles: NAA, myo-inositol (Myo), creatine (Cr),
phosphocholine (PCh), glutamate (Glu), lactate (Lac), alanine (Ala), glucose (Glc), taurine
(Tau) plus two simulated lipids profiles: lipids at 1.3ppm (Lip1) and lipids at 0.9ppm (Lip2)
The measured profiles were selected from a measured database acquired with a 1.5 T Philips
NT Gyroscan using a PRESS sequence with an echo time of 23 ms, and a PRESS box of 2 x 2
x 2cm’, as described in (Poullet et al., 2007a). 225 MRSI simulated signals grouped in 25
simulated MRSI grids of dimension 3x3 voxels were designed.

Noise disturbance
AQSES-MRSI performance for different levels of noise was measured. White Gaussian noise
with different levels of SNR (10, 15, 20, 25 and 30) was added to the signals, see Figure 4.2.

The signal power, P, , was measured for each signal as the squared Euclidean norm of the

ig o
time-domain signal divided by the length of the signal, and transformed to dB through P, =
10log¢(Py;g)- Then the standard deviation of the added noise, N(?), for the different levels of

SNR was computed as:

Sig

std ) = 10( N

P, —SNRJ (4.6)

For this experiment, damping, frequency and amplitude values were set to take values
corresponding to the signals measured in normal brain tissue. These nominal values were
chosen as in (Poullet et al., 2007a) and are within the intervals reported for in vivo MRSI
(Howe et al., 2003b, Devos, 2005b). Typically, before quantifying in vivo MRSI data, a
phase-correction preprocessing step is performed. Assuming phase-corrected in vivo MRSI
data, within the same grid, the phase values are kept constant for the same metabolite profile.
Randomly valued, but reasonably smooth (i.e., almost constant) parameter maps were
considered for damping and frequency so that, for each metabolite, the distortions of the
exponential damping factor are limited to £15% from its nominal value d within the MRSI
grid. Thus, the damping values for each metabolite uniformly cover the interval [d — 0.15*d, d
+ 0.15*d). Similarly, frequency shifts are allowed a variation of £10%, [/~0.1%*f, f+0.1%*f].
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Figure 4.2 Simulated MRSI spectra reflecting normal brain tissue profile and presenting
different levels of noise (SNR = 30, 25, 20, 15, 10 and a noise free case).

Magnetic field inhomogeneities disturbance

In order to analyze the effect of sharp edges versus smoothness and the influence of different
levels of inhomogeneities on the performance of AQSES-MRSI, a 2™ simulation experiment
was designed. For this purpose four MRSI datasets of 10x10 voxels have been generated with
different parameter maps. Each simulated MRSI grid containing a region with normal-tissue-
like spectra and a region with tumor-like spectra. The considered parameter maps present:

A. sharp edges but constant parameter values within a tissue region and different
between the regions;

B. sharp edges with slightly varying random parameters values within the tissue
region, but highly different between the regions;

C. sharp edges with smooth parameter map within the tumor region, and
D. smooth edges with smooth parameter maps over the whole grid.

Gaussian white noise of SNR = 15 was added to all signals.
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Performance measurement
The relative mean-squared error (RMSE) was computed for each metabolite & within the
simulated grid, as follows:

A

L (a,,—a®)? (4.7)

I=1 g )2
(ak

RMSE, = %Z

A
where @, ; is the estimated amplitude of the ™ signal and a;lg is the true amplitude. L is

the number of signals within the MRSI grid.

The performance over the whole grid and over all metabolites is computed as:

1
RMSE = [E " RMSE,{J (4.8)

where K defines the number of metabolites.

For every specific test, the corresponding Cramer-Rao lower bounds (CRB) are computed
from the Fisher information matrix corresponding to the true parameter values of the
nonlinear model function. Then, the calculated RMSEs are compared to the theoretical CR
bounds. This gives us an excellent indication of the gain in the accuracy that can be obtained
by using AQSES-MRSI.

4.3.2 In vivo MRSI studies

To verify to which extent the conclusion drawn in the simulation studies are consistent with
real conditions, in other words, to analyze whether the method preserves its robustness and
accuracy when applied to real data, in vivo studies are performed. To this end the method is
applied to several in vivo MRSI measurements.

The cases are extracted from the INTERPRET database (http://azizu.uab.es/INTERPRET/)
and were acquired in the Radboud University of Nijmegen Medical Centre (RUNMC) on a
1.5T clinical MR system (Siemens Vision), using a 2D STEAM pulse sequence with the
STEAM box positioned in a transversal plane through the brain showing the largest tumor
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diameter in the Gd contrast enhanced image. The study was approved by the ethical
committee of the UMCN and for tumor typing followed the rules of the World Health
Organization (WHO). The MRSI parameters are: 16x16x1024 samples, TR/TE/TM=2000 or
2500/20/30 ms, slice thickness = 12.5 or 15 mm, FOV (field of view) = 200 mm, spectral
width = 1000 Hz. The water suppressed MRSI signals are preprocessed as follows: filtering of
k-space data by a Hanning filter of 50% using the LUISE software package (Siemens,
Erlangen, Germany), zero filling to 32 x 32 and spatial 2D Fourier transformation to obtain
time domain signals for each voxel, eddy current correction, water removal with HLSVD-
PRO (Laudadio et al., 2002) and baseline correction performed as described in (Poullet,
2008). Finally, all spectra were normalized with respect to the amplitude of the water
unsuppressed signal. The SNR of the preprocessed data is computed as the power of the
signal, Py, after extracting the estimated noise power, divided by the power of noise, P,
computed from the last 180 points of the time-domain signals. For the considered data, SNR
values are between 8 and 16 dB.

As in the simulation study, 9 measured metabolites and 2 simulated ones were considered for
quantifying the data. The measured metabolite profiles were selected from a measured basis
set acquired on a 1.5 T Siemens system, using a STEAM sequence with an echo time of 20
ms, and a STEAM box of 2x2x2 cm’, as described in (Poullet et al., 2007a). These
metabolites were chosen based on their potential as biomarkers to separate between different
brain tissue types as well as to identify brain lesions. Another important aspect in the choice
of a restricted basis set is that fitting metabolites that are actually not visible in the spectrum
or that are too correlated with each other may increase the complexity of the problem and
affect the accuracy of the algorithm (Poullet et al., 2007a). AQSES-MRSI can be combined
with any other simulated or measured basis set under the same protocol as the considered in
vivo data and the basis set given here is just a representative example.

The performance of AQSES-MRSI on in vivo MRSI cases is compared with the single voxel
time domain quantification methods AQSES (Poullet et al., 2007a) and QUEST (Ratiney et
al., 2005) as implemented in jJMRUI Version 4.0, applied on individual voxels (Naressi et al.,
2001). AQSES-MRSI results are also compared with LCModel (Provencher, 2003), which
incorporates a functionality that allows the user to consider spatial information when
analyzing multivoxel data. When quantifying the in vivo MRSI data with LCModel Version
6.2, the same metabolite basis set as for the other methods was considered. To asses the
quality of the fit, the quantification results are translated into metabolic maps. Additionally,
an analysis of the fit and of the residual is performed.
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4.4 Results

4.4.1 AQSES-MRSI performance

Noise influence

AQSES-MRSI performance for different noise levels are presented in Figure 4.3. The results
are compared with the single-voxel approach AQSES. This is done separately for the
sequential steps of the algorithm (see Section 4.2.1) so that one can observe how each step,
aimed at introducing spatial prior knowledge, influences the quantification results. For low
level of noise both AQSES and AQSES-MRSI 1%, 2™ and 3™ step prove to be very robust and
accurate as the RMSE curves almost converge to the CR bound values.

12 ‘
M I CR bounds
I AQSES-MRSI 3rd step
10+ [ 1 AQSES-MRSI 2nd step [
[ ]AQSES-MRSI 1st step
a [ AQSES
8 L -
LU
: *
41 i
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10 15 20 25 30 inf
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Figure 4.3 Mean of the RMSE amplitude values computed for the 25 simulated MRSI grids of
3x3 voxels, for different levels of SNR (30, 25, 20, 15, 10 and a noise free case); the influence
on the performance of each step within the AQSES-MRSI algorithm.

For higher levels of noise, there is a clear difference between the individual voxel approach
versus the multivoxel approach. From the results we can conclude that incorporating spatial
information in the form of dynamic starting values for nonlinear parameters contributes in
minor percentage to the final performance reached by AQSES-MRSI, as a small improvement
in the accuracy is obtained after this step (see AQSES-MRSI, ). The gain in accuracy
becomes obvious after the 2™ step where soft constraints on the damping and the frequency
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parameter maps were imposed (see AQSES-MRSI,,q g,). After the ond step, the accuracy with
respect to the single-voxel approach improves with up to 70% at low SNR. At high noise
levels (see Figure 4.3), the last step, which imposes smoothness penalties, AQSES-MRSI;4
step, DTiNgs an improvement of 78% in the accuracy.

The performance of AQSES-MRSI for each metabolite individually is also investigated
(Figure 4.4). A major improvement in estimating the overlapping metabolites (Lipl, Lip2,
Lac and Ala) is obtained with the proposed method. Low standard deviation values with
respect to the mean performance are registered with AQSES-MRSI proving that the problem
of metabolite mis-quantification is reduced. Indeed, these peaks are strongly overlapping
with other metabolites, thereby decreasing the robustness of metabolite estimation. In
contrast, AQSES-MRSI still provides good estimates showing that by using spatial constraints
in the fitting algorithm we are able to obtain robust parameter estimation of overlapping
peaks; see Figure 4.5 for the RMSEs of these metabolites for a range of SNRs.

Metabolite performance at SNR 25

al AQsEs ||
~ 3 AQSES-MRSI
- 3 - CRbounds
6 '
4L i
L
2
2} i
2
AR
o0f B--8---@-=-B---F---F -8 --8-HB-——w—-8
oL i
_4 1 1 1 1 1 1 1

1 1 1 1
Naa Myo Cr PCho Glu Lac Lipt Lip2 Ala Glc Tau

Figure 4.4 Mean of the RMSE;. amplitudes values computed for the 25 simulated MRSI grids
of 3x3 voxels, for different metabolites. Vertical lines show the mean and the standard
deviation values. SNR level is 25.

Inhomogeneity influence

To analyze the impact of using spatial information in quantifying inhomogeneous data, the
results obtained with AQSES-MRSI in the second experiment are further presented. Here four
sets of simulated MRSI grids presenting different types of parameter maps were used. The
results of this experiment are presented in Figure 4.6. Regardless of the degree of
inhomogeneity, AQSES-MRSI outperforms the single voxel approach. The RMSE for
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AQSES-MRSI stays constantly below 3 within the MRSI grid. For the voxels situated at the
interference between the two considered tissue types we can notice some problems for the
sharp edge maps (see map A and map B). Even if the error remains low in these regions, the
performance of the algorithm is influenced by sudden parameters change.

The error in estimating the metabolite concentrations for map D are detailed in Figure 4.6.b-c.
A percentage of improvement of up to 75% is reported when using AQSES-MRSI. The
estimates obtained with AQSES-MRSI are very close to the true amplitudes regardless of the
tissue type. AQSES performance shows to be tissue type dependent (see the error maps of the
following metabolites: Cr, Lac, Lipl, Lip2, Ala, in Figure 4.6.b). This drawback is a
consequence of the fact that metabolite concentration varies with the tissue type and,
therefore, metabolites in low concentration in a certain region can not be estimated with high
accuracy with a single voxel approach. With AQSES-MRSI this problem is reduced.

4.4.2 The effect of including spatial prior knowledge when
analyzing in vivo MRSI data

In this section the performance of AQSES-MRSI on in vivo MRSI data is further analyzed.

Metabolic maps

The results obtained with AQSES-MRSI on different patients with different brain tumor types
(a meningioma, a glioblastoma and an oligoastrocytoma tumor grade III) are illustrated and
discussed. Since this study is not aimed at evaluating a preliminary MRI segmentation step,
when defining the parameters 3, tissue class prior knowledge is not included. This means

that we impose the spatial constraints on all the voxels surrounding the voxel of interest as
defined with the 3 x 3 spatial model (see Section 4.2.1). The resulting metabolite estimates are
exported into metabolite maps. By analyzing these maps one can have a fast visual overview
on the performance of the method. No post-smoothing has been performed on the metabolite
map images.

Results show that the AQSES-MRSI method provides a much less noisy spatial metabolite
distribution with well-contoured metabolic maps, as opposed to AQSES, QUEST and
LCModel. Even for metabolites that are difficult to quantify with conventional approaches the
proposed method gives good results, as can be seen in Figures 4.7, 4.8 and 4.9.
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Figure 4.5 Mean of the RMSE, amplitudes values of Ala, Lac and Lipl computed for the 25 simulated MRSI grids of 3x3 voxels for different levels of SNR.
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Figure 4.6 a. Simulated MRSI grids with different parameter maps: A-D. 25% of the MRSI grid contains tumor like spectra (lower right corner) and 75% of the grid
presents normal tissue like spectra. Color maps with the RMSE values for each voxel are presented for AQSES and AQSES-MRSI (see 2" and 3" row). In b. and c. the
performance of AQSES-MRSI versus AQSES in estimating the metabolite concentrations for map D is detailed for each metabolite.
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For the meningioma patient, AQSES-MRSI results are in agreement with previous studies,
(e.g. Maruyama et al., 1999; Fountas et al., 2000; Howe et al., 2003b) and in the tumor area
the NAA, Cr and Myo levels are lower with respect to the non-affected area, while Glc levels
are higher. The Myo and Glc metabolite maps drawn based on the results obtained with the
single-voxel approaches are noisier and a clear differentiation between the normal and tumor
tissue is not obtained when analyzing the levels of these compounds over the whole grid
(Figure 4.7). A decrease in NAA and Cr in the tumor area is observed for all four approaches.
Still, a smoother map is obtained when using spatial prior knowledge. Compared to LCModel,
similar metabolite maps were obtained for NAA, Cr and Myo. The LCModel map for Glc is
in disagreement with all the other results and with the literature (Maruyama et al., 1999).

For the patient with a glioblastoma (Figure 4.8), Ala and Lac concentration estimates with
AQSES-MRSI are increased in the tumor region while NAA is low, which has been observed
in previous studies for these tumors (e.g. Kinoshita and Yokota, 1997; Howe et al., 2003b).
Lips levels are reported by all methods as elevated in the affected area, being very high
towards the center of the tumor area which could be a sign of necrotic tissue (Kuesel et al.,
1994; Howe et al., 2003b). Also in this example, the parameter maps obtained with AQSES,
QUEST and LCModel are less smooth. For the single voxel approaches, high levels of Ala
and Lac are present in isolated voxels in the normal tissue region, not likely to represent the
true situation, but rather artifacts due to mis-fitting. Compared to AQSES-MRSI, LCModel,
which considers spatial knowledge, provides smooth metabolites in the normal tissue region,
while for the tumor region the maps are very noisy and present variations that seem to be
above the limit of a normal inhomogeneity behavior (the metabolite value in a voxel within
the tumor tissue region is closer to the mean of the metabolite value within the normal tissue
region). A better fit is observed with AQSES-MRSI for the spectra coming from tumor
regions, where the residual presents no contribution from the considered metabolites. With
AQSES-MRSI the tumor region is nicely contoured and the metabolite maps are smooth
through the whole MRSI grid. These results are also closer to the diagnosis agreed by the
clinicians after the histopathology. Moreover, the metabolite maps seem more plausible when
using the proposed spatial prior than without it, which is justified by comparing spectra of
neighboring voxels.
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Figure 4.7 Metabolic maps obtained after applying QUEST, AQSES, AQSES-MRSI and
LCModel. The color scheme is relative to each metabolite. The patient is diagnosed to have a
meningioma (lower left corner of the MRI image).
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Figure 4.8 Metabolic maps obtained after applying QUEST, AQSES, AQSES-MRSI and
LCModel. The color scheme is relative to each metabolite. The patient is diagnosed to have a
glioblastoma (upper right corner of the MRI image).
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Figure 4.9 In a. metabolic maps obtained with AQSES-MRSI and LCModel for a patient
diagnosed with oligoastrocytoma tumor grade Il (upper left corner of the MRSI grid). The
color scheme is relative to each metabolite. In b. the quantification results obtained with
AQSES-MRSI, for 2 selected spectra: the residual, the fit and the signal are visualized. Upper
signal comes from the tumor region; lower signal comes from the normal tissue area.

For the oligoastrocytoma case the quantification results allow us not only to separate between
tumor and normal tissue region, but also to find the contour of the CSF zone. When analyzing
AQSES-MRSI results from the quality-of-fit point of view we observe high performance both
in the tumor and in the normal tissue region. As an illustration, two signals from different
tissue regions are presented together with their AQSES-MRSI fit and the residual, see Figure
4.9. The residuals do not exhibit obvious unassigned metabolite peaks.
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4.5 Discussion

Results show that an important advantage of using spatial prior knowledge in the
quantification of MRSI spectra is that overlapping peaks as Ala, Lac and Lip, can be better
assessed independently, also in cases where single-voxel approaches fail to do so. This can
represent a critical point in the quantification of MRSI data and further in the classification of
brain tumors based on spectroscopic MR signals, as we know that these peaks are important
biomarkers to discriminate different tissue types. In addition, resonances of metabolites
present at relatively low concentration can be better estimated. This represents an added value
in the analysis of MRSI data for the detection and characterization of brain lesions and
disorders, as most of the classification algorithms are applied on feature vectors derived from
tissue levels of relevant metabolites. Application of the new method to brain tumors, which
can be very heterogeneous, showed improvements compared to conventional processing
methods. Thus, it is expected that starting from more reliable spectral parameter estimates the
accuracy and robustness to separate tumor and normal tissue and to differentiate between
tumor types will be enhanced. AQSES-MRSI results can be used as more robust starting
points towards improved tissue segmentation and classification.

The simulation studies showed that by exploiting spatial prior knowledge and by using
information from the spectral parameters (frequencies, dampings) of spectra from surrounding
voxels, statistically better results are obtained compared to processing the signals on an
individual basis. The spectral resolution of the in vivo datasets was too low to permit proper
differentiation between Glu and Gln; the CRB were larger than 50% for each of the two
metabolites. However, the sum of Glu and Gln could be reasonably estimated.

Previous quantification studies that exploit spatial prior knowledge demonstrated that this
information can improve the estimation of metabolite levels (Pels 2005; Kelm, 2007). The
approach proposed in (Pels, 2005) extends the AMARES,; method (Advanced Method for
Accurate, Robust and Efficient Spectral fitting - time series approach) (Vanhamme et al.,
1999) and exploits the idea of processing the spectra within the MRSI grid simultaneously,
while equating some spectral parameters across the grid. The problem is seen as a
quantification of a series of MRS signals, which boils down to minimizing a cost function that
includes more signals simultaneously. In (Pels, 2005) it is assumed that the frequencies and
phases remain constant over the whole MRSI grid, thus equality relations between these
parameters of the same type are imposed for all signals. The signals need to be preprocessed
by eddy current correction and spectrum alignment such that these assumptions are
sufficiently met. Then the model function is used for all the voxels, but the number of free
model parameters is lowered due to the imposed equalities on frequencies and phases,
respectively, across all voxels. However, the distortion of the nonlinear model parameters of
in vivo MRS signals depends on magnetic field inhomogeneities. These are, in turn, also
dependent on the heterogeneity of the tissue. Hence, such a simplified solution does not
satisfy the complexity of the problem in realistic cases. To better meet such conditions, small
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variations in the frequency shifts and damping corrections are allowed in AQSES-MRSI, but
their parameter maps are imposed to be smooth.

In another study spatial information is being used by a hierarchy of neighborhood systems in
the form of a generalized Gaussian Markov random field (GMRF) (Kelm, 2007; 2011).
Instead of exact equality relations, softer constraints are considered in the form of spatially
smooth parameter maps for the frequencies, dampings and phase variables. To this end, a
Bayesian approach of specifying a prior distribution over the considered parameter maps is
used (Chou and Brown, 1990). This means that penalty terms in the form of weighted
distances between parameters of the same type are added to the nonlinear least squares fitting
problem based on the classical model of a sum of damped exponentials. As in (Pels, 2005) the
optimization function is modified so that several signals are fitted simultaneously and the
method is not sensitive to the heterogeneity of the information contained in the MRSI grid.
Although GMRF provides an elegant methodology, the structure of the GMREF is often a poor
model of the true components underlying the data, especially if we deal with very
heterogeneous data. Part of the problem stems from the Markov property that the relationship
among adjacent voxel pairs is determined by the input features (Dietterich, 2007). First order
(four neighbors) and second order (eight neighbors) hierarchies of neighborhood systems are
used (Kelm, 2007). This makes the optimization problem very hard to solve because it
requires a global adjustment and we deal with extremely high-dimensional data. This study
shows that a computational cheaper approach for introducing spatial information can bring
very satisfactory improvements in the quantification process. In our proposed adaptive
method, AQSES-MRSI, a nonlinear least squares problem is solved only for the parameters
of the current signal for each voxel at a time, and several sweeps through the MRSI grid are
performed so that some of the hyperparameters of the problem are optimized at each sweep.
Hence, as opposed to previous studies (Pels, 2005; Kelm, 2007), a common optimization for
simultaneously fitting all the signals in the MRSI grid and simultaneously penalizing all their
parameters was not explicitly needed in this study.

Quantification methods based on numerical optimization usually require excellent starting
values for the model parameters. With AQSES-MRSI an intrinsic correction mechanism, to
adapt the starting values and to correct the nonlinear parameters variability in the
quantification of each signal at each sweep through the grid, is proposed. Thus, simply
starting in the first sweep with zero corrections on the dampings and zero frequency shifts for
all the metabolite profiles, still leaves the possibility of multi-start optimization, since starting
values can change at each sweep according to the parameters of the neighboring voxels. An
analysis of MRSI data by LCModel software, which also includes spatial information, showed
a relatively low performance in tumor regions, suggesting that its accuracy is tissue type
dependent, which could be a drawback in the processing of very heterogeneous MRSI data As
in (Kelm, 2007), by adding a smoothing penalty term an improved solution is obtained.
Another added value of AQSES-MRSI is the fact that neighboring regions could be
dynamically chosen, giving the user the possibility to extend or to limit the neighborhood area
by adding tissue prior knowledge when defining this area.
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AQSES-MRSI, the methods proposed in (Pels, 2005; Kelm, 2007; 2011) and LCModel
software have in common that the resolution of the parameter maps equals the resolution of
the MRSI grid, although MRI information can be used for pre-assignment of voxels to a
certain tissue type. An interesting different approach is considered by the recent k-space-time
methods (Bao and Maudsley, 2007; Kornak et al., 2010), which use prior anatomical
knowledge to reconstruct MRSI signals and metabolic maps at the resolution of the
underlying MRIL.

4.6 Conclusions

With AQSES-MRSI improved metabolite estimates of MRSI data can be obtained. This study
demonstrates how essential it is to have a robust method for tuning the starting values, the soft
constraints and the additional penalties involved in the optimization algorithm. Exploiting
spatial prior knowledge is shown to improve the accuracy of quantification compared to
processing MRSI voxels on an individual basis. It brings the advantage that overlapping peaks
or peaks of compounds present at low concentration can be better resolved than in single-
voxel approaches. Because of the automation of the method and its improved robustness to
deal with spatial heterogeneity of spectral data, AQSES-MRSI is expected to be a better and
more attractive tool to analyze clinical MRSI data, for patients with intracranial tumours, than
single-voxel approaches.



Chapter 5

Classification of HR-MAS signals
for tumor tissue typing in adult
human gliomas

In gliomas one can observe distinct histopathological tissue properties, such as viable tumor
cells, necrotic tissue or regions where the tumor infiltrates normal brain. A first screening
between the different intratumoral histopathological tissue properties would greatly assist in
correctly diagnosing and prognosing gliomas. In this chapter’ the potential of ex vivo HR-
MAS spectroscopy in characterizing these properties is analyzed and the biochemical
differences between necrosis, high cellularity and border tumor regions in adult human
gliomas are investigated. In Section 6.3 the statistical studies applied on sets of metabolite
concentrations and metabolite ratios extracted from 52 HR-MAS recordings coming from
patients with different grades of glial tumors are described. Then, in Section 6.4, the
correlation between the histopathological tissue properties and the considered metabolic
profiles is analyzed. The results are described in Section 6.5. Additionally, representative
reference tissue models describing the metabolic behavior are extracted for characterizing
the intratumoral tissue properties.

5.1 Introduction

Glial brain tumors are one of the most common brain tumors found among adults and are
characterized by an extensive heterogeneity. This is reflected both at the level of the tumor
type and grade, as well as at a microscale level, since along with viable tumor cells there may
be necrotic regions. Moreover, glial tumors are highly infiltrative. Therefore, there may also
be a contribution from normal brain tissue at the border of the affected area. These
characteristics have posed serious difficulties in the diagnosis and prognosis of glial tumors.

2 Croitor Sava AR, Martinez-Bisdal MC, Celda B, Cerda JM and Van Huffel S. Tissue typing within glial
tumours. In Proc. of the European Society for Magnetic Resonance in Medicine and Biology Congress
(ESMRMB). Antalya, Turkey. 2009; 471-472.

and

Croitor Sava AR, Martinez-Bisbal MC, Van Huffel S, Cerda JM, Sima DM, Celda B. Ex Vivo High
Resolution Magic Angle Spinning Metabolic Profiles Describe Intratumoral Histopathological Tissue
Properties in Adult Human Gliomas. Magnetic Resonance in Medicine. 2011; 65: 320-328.
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As a result, many researchers are now focusing on understanding this disease from the
metabolomic, genomic and proteomic points of view.

The potential of ex vivo and in vivo NMR spectroscopy has been lately extensively exploited
in the separation between normal brain and brain tumors (Rutter at al., 1995; Howe et al.,
2003), as well as for the characterization of different degrees of malignancy (Opstad et al.,
2008a; McKnight, 2004; Negendank at al., 1996; Erb et al., 2008). The focus in most of the
previous studies lies mainly on brain tumor characterization and typing, without describing
the histopathological tissue properties at a microscale level. However, there is an increasing
interest in determining the correlation between metabolic features derived from ex vivo high
resolution magic angle spinning (HR-MAS) and histopathological properties, as the HR-MAS
technique is becoming a metabolomic methodology with potential applications in supporting
tumor classification and diagnosis. Previous studies have shown that HR-MAS can help in
predicting the growth characteristic within different regions of a tumor (McKnight et al.,
2007) and can help in differentiating between glial tumor grades (Erb et al., 2008). Moreover,
with HR-MAS one can successfully reveal the status of tumor microheterogeneity (Cheng et
al., 2000) and can observe metabolic alterations before they are morphologically detectable
(Andronesi et al., 2008), which, in turn, can further be correlated to histopathological
properties (Opstad et al., 2008a, 2008b). Nevertheless, these studies limit themselves at
describing independent metabolite behavior while ignoring their interconnectivity. In this
chapter a multivariate statistical study where sets of features coming from combinations of
different metabolites and metabolite ratios are analyzed for assessing their relevance in
correlating the HR-MAS spectra with the histopathological tissue properties is proposed.

Although HR-MAS is increasingly used to analyze tumor tissue biochemistry, nowadays
histopathological analysis of the surgically extracted tumor tissue is usually considered as the
gold standard for assigning the type and grade of the tumor, as well as the contribution of
necrosis, high cellularity and normal brain tissue within the tumor area. Since HR-MAS
spectra are obtained directly from the biopsy sample, HR-MAS can reveal a first level of
correlation between metabolic profiles and biopsy tissue type, allowing for a better
investigation of the tumor. Additionally, with ex vivo HR-MAS the tissue integrity is mostly
conserved. This is a major advantage since it allows one to perform, on the same tissue
sample, multimodal studies including subsequent genomic, proteomic or histopathological
analyses and, therefore, to obtain a direct comparison between all these techniques. The added
value of combining and comparing different techniques has been shown before (Cheng et al.,
2000; ; Tzika et al., 2007; Andronesi et al., 2008; Righi et al., 2009). Such analyses, based on
multiple data sources, can provide further insights into the biology of the brain tumors and
improve the diagnosis.

In this chapter, the correlation between metabolic features derived from ex vivo HR-MAS and
necrosis, high cellularity or infiltrations, which are common histopathological tissue
properties, is evaluated. Therefore, both metabolomic and histopathological knowledge is
considered. Compared to (Cheng et al., 2000), where similar conclusions are drawn from
tissue samples coming from the same patient, this study employs a multicenter database of
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frozen tissues extracted from 52 patients presenting different types of glial tumors
(glioblastoma (GBM), grade III (GIII) and grade II (GII)).

The purpose of the study is threefold:

= First, to analyze whether with unsupervised classification methods
predominant histopathological tissue property can be identified for each glial
tumor type. As the highest heterogeneity is observed and confirmed by the
histology in the GBM group, this group is firstly analysed. To this end, feature
sets coming from various metabolites and metabolite ratios are tested as
potential biomarkers for the considered clustering problem. The statistically
significant correlation between the considered feature sets and the predominant
histopathological tissue properties is also investigated.

= Second, to extract representative reference metabolic tissue models for each
histopathological tissue property and to analyze which of the considered input
feature values are most sensitive in revealing the predominant
histopathological property.

=  Finally, to test whether the conclusions drawn for the GBM group can be
extended to other glial tumor groups, with different grades of malignancy.

5.2 Materials

5.2.1 HR-MAS data acquisition

Brain tumor biopsies were carried out on 52 adult patients presenting a glial tumor. Three
hospitals provided the samples used in this study: Hospital La Ribera-Alzira (Valencia),
Hospital Clinico Universitario (Valencia) and Instituto FLENI (Buenos Aires), all
participating as partners in the eTUMOUR project (www.etumour.net). Initial diagnosis, done
in each centre as a routine part for the standard patient management, assigns the considered
cases to glial tumor group with different degree of malignancy: 27 grade IV glioblastoma
tumor (GBM), 7 grade III glial tumor (GIII) and 18 grade II glial tumor (GII). The tissue
specimens were snap-frozen in liquid nitrogen and stored at -80°C until the time of
spectroscopic analysis, when 1D PRESAT (pulse-and-acquire) data were acquired. HR-MAS
experiments were conducted on 29/52 samples using a Bruker Avance DRX 600 spectrometer
operating at a 'H frequency of 600.13 MHz. The instrument was equipped with a 4 mm triple
resonance 'H/"*C/'">N HR-MAS probe with magnetic field gradients aligned with the magic
angle axis. 23/52 samples underwent HR-MAS experiments using a Bruker Avance DRX 500
spectrometer operating at a frequency of 500.13MHz. The instrument was equipped with a
4mm triple resonance 'HA'P/C HR-MAS probe. A single-pulse 90° pre-saturation
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experiment was acquired in all the samples. Number of transients was 256 collected into 32 k
data points for all the experiments. Water pre-saturation was used during one second along the
recycling delay for solvent signal suppression. Spectral width was 8 kHz and 10 kHz for
600MHz and 500MHz NMR spectrometers, respectively. To keep the rotation sidebands out
of the acquisition window, samples were spun at 5000 Hz in the DRX 600 spectrometer and at
4000 Hz in the DRX 500 spectrometer. Sample temperature was kept at 4°C, using the
cooling of the inlet gas pressures responsible for the sample spinning. Recycling delays were
1.5 seconds for all experiments. Each sample was introduced in a 4mm ZrO, rotor fitted with
a 50 ml cylindrical insert, without any previous D,O washing.

5.2.2 HR-MAS data preprocessing

The HR-MAS spectra were preprocessed as follows. Signals were truncated to the first 2048
points to reduce the computational load in the preprocessing steps. The water components
were removed by HLSVD-PRO (Laudadio et al., 2002). Contributions outside the frequency
interval [0.25, 4.2] ppm were filtered out in order to keep only the contribution of the
metabolites of interest. Small variations in the chemical shift of peaks between HR-MAS
experiments have been noticed. Therefore, all filtered 1D PRESAT were aligned with respect
to the Alanine doublet at 1.47 ppm (Poullet et al., 2007b). Signals were then normalized
(divided by the L2 norm of the frequency domain signal between 0.25 and 4.2 ppm). A
baseline correction was applied using an apodization function as described in Chapter 2,
Section 2.1.8.

The concentrations of the following metabolites were measured for the study: the lipids group
(Lips), N-acetylaspartate (NAA), Creatine (Cr) and total Choline group (tCho). Peak
integration, see Chapter 2, Section 2.2.3, was used for extracting the concentration of these
metabolites by considering the following integrated intervals in ppm: Lip1 [0.84, 0.91], Lip2
[1.255, 1.285], Lip3 [2.79, 2.81], NAA [2.0, 2.015], Cr [3.01, 3.03], Cho [3.19, 3.205], PCho
[3.21, 3.22], GPCho [3.225, 3.235]. These areas were computed from the mean of all the
available HR-MAS spectra. Specifically, the highest point in the area to be integrated was
identified for each metabolite, then the area bounds were fixed for each metabolite
individually to those ppm values at which peak slopes return to baseline, but keeping
symmetric intervals with respect to the highest point.

Sets of metabolite features were tested along with metabolite ratio feature sets to determine
which is most likely to preserve the tissue’s histological information. Hence, the ratio set was
composed of Lips, NAA and tCho with respect to Cr. Consequently, the considered features
were real-valued numbers that can be represented as points in an n-dimensional space, where
n =7 for the concentrations case, and n = 3 for the ratios case.
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5.2.3 Histological analysis

After performing the HR-MAS study, tumor specimens were snap-frozen and submitted for
quantitative histopathological examinations. 37 out of the 52 biopsy samples (22 GBM, 6 GIII
and 9 GII) were subject to histological examination performed on tissue samples taken from
the same part used in the HR-MAS study. The analysis was done by an expert neuro-
pathologist and the samples were classified according to the revised WHO criteria (Louis et
al., 2007). The samples were fixed in 10% formalin, embedded in paraffin, serially sectioned,
slide mounted and stained with Hematoxilyn and Eosine. Routine histological methodology
has been used for evaluating the cell density and the percentage of necrosis. Based on the
histology the samples are considered with variable content of highly cellular tumor tissue,
infiltrations with normal tissue and/or necrotic tissue. The percentage of tissue with a
predominant property was calculated for each sample by measuring the total area of the
biopsy sections and then delineating the regions of interest. Each case was assigned as having
a certain histopathological tissue property when its corresponding region was = 50% from the
total area and any of the other two properties was observed in a region < 20% from the total
area. Nevertheless, for the largest part (approximativly 85%) of the high-cellularity samples,
the histology post HR-MAS showed a percentage of cellularity > 75%. See Table 5.1 for more
details.

5.3 Methods

The steps involved in the statistical analysis of the HR-MAS data are: distribution analysis,
clustering and validation, applied exclusively to the feature vectors described in Section 6.2.

Data distribution

For obtaining information about the location and the spread of the data, the variance within
each tumor group by computing the median and the interquartile range (IQR) is studied. This
representation, know as boxplots, is thus helpful to detect possible skewness in the data and
existing outliers.

Data clustering

Cluster analysis is used to determine if the considered feature sets have the potential to predict
histopathological tissue properties. The k-means clustering algorithm (Hartigan and Wong,
1979), see also Chapter 2, Section 3.2.1, is applied to the HR-MAS data to partition them into
k subsets (clusters C;...C,). Each centroid is the component-wise mean of all the objects
(feature vectors) in that cluster, after centering and normalizing the sequence of values within
each object to zero mean and unit standard deviation.



Table 5.1 Percentage of tissue contributions for each case according to the
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histopathological study. The index represents the number assigned at acquisition.
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Since the similarity in shape between two feature vectors embodies the interest of this study,

the correlation distance was considered most appropriate for the considered data. More
precisely, the distance d(x, u;) is computed as (Cohen et al., 2003):

(x_f)(ll'l[ _IL_I[)/ (51)

d(x,u)=1- — — = —
JE=X)(x=%) (1, - B, — ;)

where the bar denotes a vector with all elements equal to the mean of the values in the given

vector, and the prime denotes vector transposition (here, x and [/ are row vectors).

Statistical validation

A critical parameter in clustering is the number of clusters, k. To minimize subjectivity when
choosing the best number of clusters for the data, k£ is estimated with several statistical
indices, which measure the quality of the clustering on the basis of the definition that objects
within one cluster are similar to each other, while objects in different clusters are dissimilar
with each other. The optimal number of clusters among different values of & is obtained by
evaluating the solutions of the following proposed validity indices: weighted inter-intra index
(Wint) (Strehl, 2002), Krzanovski-Lai index (KL) (Krzanowski and Lai, 1985), Silhouette
index (Sil) (Rousseeuw, 1987) and Homogeneity and Separation index (Kaufman and
Rousseeuw, 1990), which are described in details in Chapter 3, Section 3.3.

As a final measure of the statistical significance of the proposed data analysis, the cluster
reliability, or the likelihood that the cluster structure is not formed by chance is measured. For
this, Tukey multiple comparison (Tukey, 1949) is considered after performing the Kruskal-
Wallis test (Hollander and Wolfe, 1973), see also Chapter 3, Section 3.3. This procedure
provides a comparison interval for the mean value of the considered features allowing one to
check if the metabolite alterations are statistically significant between the considered clusters.

5.4 Correlation with histopathology

After assigning each case to one of the clusters, the relationship of each cluster to
histopathology is investigated. For labeling the clusters, the correlation between the cluster

centroids /£, and the metabolic profile coming from pure tissue samples (with the dominant

histopathological tissue property more than 90% of the total region) is computed by means of
correlation coefficients. Clusters are labeled considering the highest correlation coefficient
value. Furthermore, reference metabolic models are proposed for necrotic, highly cellular and
border tissue, by computing the mean of the feature vectors belonging to the same cluster
after centering and normalizing the sequence of values within each feature vector to zero
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mean and unit standard deviation. Only the cases with histopathological confirmation are used
in this step.

Grade II and grade III gliomas tissue characterization

One purpose of this study is to analyze to which extent the molecular composition is
dependent on the tumor grade. To this end, the metabolomic analysis, supported by
histopathology, is extended to the GII and GIII glioma groups. For each case within the GII
and GIII tumor groups the correlation coefficient between the feature vector extracted from
the HR-MAS spectra and all the reference models obtained for the GBM group in the
previous step is computed. This approach should grant further insight to whether the
metabolic profiles from the GBM clusters change significantly with the tumor grade, and
whether a similar molecular composition can be observed for necrosis, highly cellular or
infiltrations, regardless of the grade of malignancy.

5.5 Results

Results of the statistical analyses

According to the histological exam, a great extent of tissue heterogeneity is observed for all
the studied glial tumors and the high grade tumors appear to be more heterogeneous than low
grade tumors. In particular for the GBM group, although all cases within this group were
initially diagnosed in the hospital as high grade GBM tumor, they are highly variable in their
composition as different content of necrotic, high cellularity or infiltrations with normal
tissue, as reported by histopathology. Some samples contained up to 90-100% necrosis and
some contained only areas of infiltrating tissue at the border of the tumor. The intergroup
variability is reflected also at metabolic level (Figure 5.1). The metabolite concentration
distributions are observed to be widely dispersed around the median values and outliers can
be identified. The likelihood that the identified outliers cluster together as a new subgroup
within the GBM group is investigated.

Using no prior knowledge, data clustering of the GBM group in 3 subgroups is indicated as
the best solution by the Homogeneity-Separation, Sil and Wint indices (see Figure 5.2 a) and
b)). According to these findings, £ = 3 is further considered the optimal number of clusters for
the k-means clustering algorithm. KL index suggests 4 as the best number of subgroups for
data clustering. The 4™ cluster contains in fact only one case, which was considered by
histopathology with over 90% contributions from normal tissue. The results of the clustering
procedure are presented in Figures 5.3 and 5.4.
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Figure 5.1 HR-MAS spectra coming from GBM samples with different predominant tumor
histopathological properties. The vertical lines highlight the region where the considered
metabolites are located in ppm scale.

One can visually observe considerably high differences in the metabolite profiles between the

three clusters. The obtained clusters are homogeneous and clearly separable. ({, correlates
best with infiltrative border tissue (corr = 0.84), L, with the necrotic tissue (corr = 0.98) and
M, with the highly cellular tissue (corr = 0.85). Additionally, the relationship between these

findings and the conclusions drawn from histology are assessed. A very good agreement
between these two different techniques is obtained when working with the metabolite
concentrations set, as 21 out of 22 histopathologically validated cases were found to contain
tissue with the same predominant histopathological property, both with HR-MAS clustering
analysis and with the histopathological procedure. The results are in agreement with literature

since A, is characterized by high levels of NAA, which are typically found at the border
region of the tumor or in regions with infiltrative normal tissue (Peeling and Sutherland,

1993). M, presents very high levels of Lip(s), which is an expected behavior for GBM
tumors and is mainly associated with necrosis (Opstad et al., 2008), while £/; has high level

of Cho(s), a generally accepted biomarker of active tumor cell growth (Tedeschi et al., 1997).
The obtained clusters will be further referred to as border tissue (C;), necrotic tissue (C,) and
high cellularity tissue (Cs), respectively. In Figure 5.4, all the GBM cases projected in a
multidimensional scaled plane represented by the first three principal coordinates (PCOs)
(Gower and Hand 1996) are shown.
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Figure 5.4 Data visualization in the principal coordinates space. First three principal
coordinates (PCol, PCo2, and PCo3) of GBM samples were considered. The three black
ovals drawn on the obtained image encompass the clusters’ population.

For case 3, indicated by a light blue circle in Figure 5.4, an agreement between the metabolic
and the histopathological analysis was not obtained. It was clustered as predominantly highly
cellular tumor, while histology reports this area to be composed primarily of normal tissue.
As this tissue type is not considered in this study, case 3 is reported as an outlier and this
could explain its location outside the 3 obtained clusters. The same case was assigned by the
KL index to a separate cluster. The five cases for which no histopathological validation is
available (indicated by a dark green circle in Figure 5.4 do not influence the clustering results,
as they are evidently grouped with the other objects in their clusters.

When considering the metabolite ratios, an agreement with the histopathology was obtained
for 18 cases out of 22. Three of the four cases without agreement cluster as predominantly
border tissue when considering the ratios, while the histopathology reports a high percentage
of active tumor cells. Case 3 was assigned, also when working with metabolite ratios, to
predominantly highly cellular tumor tissue.

Grade II and grade III glioma characterization

For the GIII tumor group, 2 cases out of 7 are highly correlated with the border tissue model
and 5 cases are highly correlated with the high cellularity tissue model, see Figure 5.5. These
results are in agreement with the histology. A special situation is represented by case 28, for
which the histopathology reveals equal percentage of highly cellular tumor tissue and
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infiltrations (50%-50%). The metabolic profile of this case correlates most with
predominantly border tissue. Still, a very high correlation with the highly cellular tissue model
is also obtained. No case with predominantly necrosis was reported for this tumor group.

For the GII tumor group, the metabolic analysis indicated that 11 cases were highly correlated
with the highly cellular tumor tissue model, 5 cases with the border tissue model and 2 cases
with the necrotic tissue model, see Figure 5.5. A good agreement with the histology was
obtained for 7 out of the 9 histopathologically validated cases. Histopathology confirms for
one case within this tumor group some contributions from necrotic tissue. This apparent
inconsistency (one grade II glioma presenting necrosis) could be a consequence of the fact the
tissue sample analyzed with HR-MAS is not strictly coming from the same tumoral region as
the one used for initial diagnosis. The two cases assigned by metabolic analysis to necrosis
reveal high lipids levels. As in (Opstad et al., 2008a), lipids are observed to be present in non-
necrotic biopsy samples. This could be, for example, due to hypoxia, since lipids may
originate not only from regions of necrosis, but also from viable growth-arrested cells (Barba
etal., 1999).

5.6 Discussion

The present work illustrates a significant correlation between the tumor microheterogenity as
revealed by the histopathology and ex vivo HR-MAS sets of metabolite concentrations and
ratios.

Combinatorial approaches, where different techniques are correlated for assessing the relation
between clinically relevant cell processes and specific metabolites, have been previously
proposed. In (Tzika at al., 2007) and (Righi et al., 2009), combining HR-MAS and genomic
data provides insights into the biology of glial tumors. In (Cheng et al., 2000) HR-MAS of
intact brain tumor biopsies are combined with histopathology for revealing tumor
microheterogeneity. Specifically, the concentration of mobile Lips and Cho were reported to
correlate linearly with the amount of necrosis and tumor cellularity, respectively, while higher
levels of NAA are expected in the border region of the tumor with respect to the active tumor
region. Still, the conclusions drawn in (Cheng et al., 2000) are coming from a limited number
of samples originating from a single patient with GBM tumor. In this chapter a more complex
study, where samples measured in different clinical centers and coming from different
patients with glial tumor with different grades of malignancy are analyzed using advanced
statistical methods. Results confirm that, by using only information coming from ex vivo HR-
MAS data, clearly differentiate between histopathological tissue properties within glial brain
tumors, regardless of the malignancy grade. An important finding is that the alterations in
metabolite concentrations are correlated and not independent from each other. Based on this,
representative tissue models describing metabolites’ behavior for necrotic, highly cellular and
border tumor tissue can be derived. To our knowledge this is the first study that derives the
metabolic profiles of the three considered histopathological tissue properties.
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Best biomarkers for tissue differentiation and characterization

The results suggest that all the investigated metabolites and ratios are sensitive in identifying
histopathological tissue properties. A p-value lower than 0.01, which is often considered in
the literature to be the threshold value for declaring that the differences are at a high level of
significance, was obtained for each feature considered in the study, see Figure 5.6. NAA,
tCho group and Lips are interconnected. This interconnectivity gives rise for example to
correlations between decreased Cho and Lips and increased NAA in the border region of the
tumor. Better differentiation between necrotic, border and high cellularity tumor tissue is
obtained when considering sets of features compared to independent features. In Figure 5.7,
different metabolic subsets are chosen to describe the space in which the GBM data are
analyzed. The Lips-to-tCho metabolite subset allows us to better differentiate necrosis from
highly cellular tumor tissue, while best separation between all three tissue properties is given
by the tCho-to-NAA subset and the Lips-to-NAA subset.

Characteristic features of necrosis are significantly increased concentrations of Lips and
metabolite ratios of Lips/Cr compared to the respective levels in high cellularity and border
tumor tissue. These results are in agreement with the conclusions formulated previously in the
literature (Kuesel at al., 1994a; 1994b; Cheng et al., 2000; Opstad et al., 2008a). We
additionally report for necrosis that NAA and NAA/Cr values are almost negligible and the
concentrations of tCho and the tCho/Cr values are also very low. Having as reference the sum
of all the considered metabolites, in necrotic tissue we observe NAA level <20%, while Lip(s)
level >60% and Cho(s) level < 30%, see Figure 5.8.

A distinguishable characteristic of border tissue is the high level of NAA. These results are
confirming the conclusions reported previously in the literature. Also Lips play an important
role in separating border tissue from necrosis, and as well the tCho group. As seen in Figure
5.8, Lip(s) level < 40%, NAA level > 20%, Cho(s) level > 20% within the border tumor
regions. Lips/Cr ratios are low or very low, the Cho/Cr, PCho/Cr and GPCho/Cr ratios are <
1.5 and NAA/Cr is not negligible.

tCho values are the highest in highly cellular tumor regions. The levels of NAA and its ratio
to Cr is very low, the Lips and Lips/Cr are much lower compared to necrotic tissue but not
varying too much from the values reported in border regions. As a conclusion of our results
the Lip(s) level <50%, NAA level <20%, Cho(s) level > 40% in high cellular area and the
Lips/Cr ratios are low or very low, the Cho/Cr, PCho/Cr and GPCho/Cr ratios are > or close
to 1.5 and NAA/Cr is negligible.

Similar metabolic patterns were observed for the considered tissue properties, regardless of
the grade of malignancy. The results demonstrate the biological relevance of MRS biomarkers
in understanding the biology of the tumor, with potential in improving non-invasive diagnosis
and in aiding clinicians in improving diagnosis and treatment and ongoing evaluation of the
patients. Even if the diagnosis assignment is progressively improving by implementations of a
variety of pattern recognition methodologies (Poullet et al., 2009), still difficulties remain in
the grading of glial tumor. This may be due to the fact that the methodologies proposed are
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not sensitive to the microheterogeneity of the tissue. Commonly, the tumor classification
problem is limited to separating between different tumor grades, without considering the
contributions of necrotic or normal tissue in the metabolic profile of the spectra under
investigation. As it was shown in this study, there is a high variability within the HR-MAS
data coming from the same tumor grade group. This intra-group metabolic variability is a
consequence of the tumor microheterogeneity, since no biopsy procedure could guarantee the
homogeneity of the sample under investigation. Ignoring a first separation between the three
histopathological tissue properties will highly affect the performance of any classifier applied
on HR-MAS data. Tissue microheterogeneity is expected to be reflected also in the spectral
profile of in vivo MRS or MRSI measurements, where one will deal with large voxel volumes
(the area under investigation is much larger than with HR-MAS).

The findings in this study could be translated to in vivo studies and, therefore, could aid in the
interpretation of low resolution single-voxel MRS and multi-voxel MRSI. This is especially
supported by previous works that reported for the metabolites considered here a high
correlation between ex vivo and in vivo MRS (Celda et al., 2006; Martinez-Bisbal et al., 2004;
Opstad et al., 2010). Moreover, there are situations in which prior knowledge on the
intratumor tissue differences could add to the power of an accurate tumor classification, by
improving the identification of the glial tumor grade (Erb et al., 2008) or in separating
glioblastomas from metastasis (Fan et al., 2004; Luts et al., 2009b).

One should not neglect the fact that the examined tissue samples have a complex content
being composed of a mix between two of the following: necrotic, border and high cellular
tumor tissue, as reported by the histopathology. This characteristic could be observed also
with HR-MAS data as some cases were very close to the border between two tissue types.
Further studies on tissue source separation and quantification of the contribution (abundance)
of each source within each tissue sample have been performed and are detailed in Chapter 6.
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5.7 Conclusions

The statistical studies performed in this chapter show a strong correlation between the histopathological
tissue properties and metabolic profiles coming from ex vivo HR-MAS in glial tumors. The results are
in agreement with the pathology obtained by the histopathological examination that succeeded the high
HR-MAS measurements A clear separation between necrotic tissue, high cellularity tumor tissue and
border tumor tissue is obtained regardless of the malignancy grade. The metabolite concentration sets
can better differentiate between the considered histopathological tissue properties than the ratios of the
metabolites to Cr. The proposed metabolic profiles reflect that the metabolites behavior is
interconnected, and typical biochemical patterns emerge for each histopathological tissue property. Ex
vivo HR-MAS can therefore provide relevant metabolic information on the tumor tissue under
investigation. Likewise, the adequate agreement between ex vivo metabolic characteristics, obtained
from the HR-MAS classification and histopathology results, can aid in the interpretation of in vivo
spectra and, therefore, increase their importance in non-invasive brain tumor classification.

The findings in this chapter could aid in a better understanding of glial tumor tissue metabolism, and
therefore could improve in diagnosis and prognosis of the tumor type and grade.
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Chapter 6

Non-negative blind source separation
techniques for brain tumor tissue

typing

This chapter’ presents a study with the goal to differentiate between tumor tissue types by separating
the different sources that contribute to the profile of each spectrum. Blind source separation techniques
are applied for obtaining characteristic profiles for necrosis, high cellular tumor and border tumor
tissue, and providing the contribution (abundance) of each of these tumor tissue types to the profile of
each spectrum. The problem is formulated as a non-negative source separation problem. Non-negative
matrix factorization, convex analysis of non-negative sources and non-negative independent component
analyses methods are tested both on ex-vivo HR-MAS and in vivo MRSI data. The results are
confronted with the pathology obtained by the histopathological examination that succeeded the HR-
MAS measurements Firstly, in Section 6.1, an analysis to verify to which extent the dimension of the
input space, the input features and the number of sources to be extracted from the HR-MAS data could
influence the performance of the source separation is presented. In Section 6.2 the study is extended to
in vivo MRSI data.

6.1 Application to ex vivo HR-MAS spectroscopy

6.1.1 Introduction

As shown in Chapter 5, a significant variability within the HR-MAS spectral profiles belonging to the
same brain tumor tissue type can be observed (Croitor Sava et al., 2011b) due to the heterogeneity that
characterizes brain tumors. Thus, the tissue under investigation might present contributions from

3 Croitor Sava AR, Sima DM, Martinez-Bisbal MC, Celda B and Van Huffel S. Non-negative blind source
separation techniques for tumor tissue typing using HR-MAS signals. In Proc. of the 32nd Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMB), Buenos Aires, Argentina. 2010;
3658-61.

and

Croitor Sava AR, Martinez-Bisbal MC, Sima DM, Calvar J, Esteve V, Celda B and Van Huffel S. Quantifying brain
tumor tissue abundance in HR-MAS spectra using non-negative blind source separation techniques. Submited to the
Journal of Chemometrics.
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various tumor tissue types. The observed spectra are, therefore, a combination of different constituent
sub-spectra, since the measured signal is the response to the stimulation of the entire tissue sample. The
overall gain with which a tissue type contributes to a spectrum is proportional to its abundance, i.e., its
proportion in the entire mixed tissue sample. As a result, multiple metabolites and tissue types may be
present in a single HR-MAS spectrum.

This concept can be summarized by describing the spectra available from m samples, which are stacked
as n-dimensional row vectors in an m by n matrix X, where n is the number of observations (or data
points) in each spectrum:

X =4S (6.1)

where S is a k£ by n matrix whose & rows are the unknown pure tissue spectra (also referred to as
sources) and n the number of observations of each source. 4, an m by k matrix, contains the
concentrations, or abundances, of the constituent pure tissue sources in each sample.

The purpose of the study is to identify the pure components of the different tissues, S, and to estimate
the concentration of each component, 4. This problem is formulated as a blind source separation
problem (BSS). BSS techniques have been previously considered when analyzing NMR spectroscopic
data since they have shown some interesting properties such as: a straightforward interpretation and
analysis of the data without the need for prior knowledge (no representative training set or
representative models are required); a better interpretation of the complexity of the data by allowing
one to resolve the partial volume effect caused by the heterogeneity of the brain tissue; decomposing
the mixture of the spectra under investigation; easily interpretable results for clinicians. Previous
studies mostly refer to the analyses of in vivo single voxel MRS (Lee et al., 2000; Ladroue et al., 2003)
and multi-voxel MRSI brain data (Szabo De Edelenyi et al., 2005; Su et al., 2008; Wright et al., 2009).
Still, in all these studies an empirical validation of the results obtained with the proposed BSS methods
is proposed. This is due to the fact that is very difficult, if not impossible, to determine if the obtained
components are really corresponding to spectra of pure tissue in the brain. Although for healthy tissue
and necrosis it is possible to acquire spectra from voxels filled with only one tissue, for high cellular
tumor tissue there is a weak probability to obtain such a direct validation. In the proposed study several
BSS techniques are applied to ex vivo HR-MAS data to obtain the pure tissue sources and quantify their
abundance in the analyzed spectra. With HR-MAS a straightforward validation of the results is
available, since a histopathological analysis was performed post HR-MAS acquisition on the same
tissue samples. Histopathology, which is often considered the ground-truth for brain tissue typing,
provides detailed information on the mixture of tissues present in the data under investigation, as well
as the concentration of each tissue.

An important constraint considered in this study is the nonnegativity. This solution is motivated by the
nature of the NMR magnitude spectra, where one has to deal with non-negative signals. Blind
separation of non-negative source approaches have been recently successfully used in many
applications where the sources to be separated are of non-negative nature, e.g., biomedical imaging
(Nuzillard D. and Nuzillard J.M., 1998), analytic chemistry (Malinowski, 2002), hyperspectral imaging
(Nascimento and Dias, 2005) and biomedical signals (Su et al., 2008). The way to exploit the non-
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negativity characteristic in non-negative BSS (nBSS) techniques is subjective to the data under analysis.
Therefore numerous nBSS alternatives have been proposed. A class of nBSS methods utilizes the
statistical property that the sources are mutually uncorrelated or independent. This class includes
among others: non-negative independent component analysis (nICA) (Plumbley, 2002, 2003; Oja and
Plumbey, 2004; Yuan and Oja, 2004), Bayesian positive source separation (BPSS) (Moussaoui et al.,
2006). Another class of nBSS methods is represented by implementations which require no assumption
on source independence or zero correlations. One such nBSS approach is the non-negative matrix
factorization (NNMF). This method explicitly imposes source non-negativity and even mixing matrix
non-negativity.

Compared to the previous studies on NMR spectroscopic data using BSS techniques (Lee et al., 2000;
Szabo De Edeleny et al., 2005; Su et al., 2008; Wright et al., 2009), where only the performance of
one method was reported, in this chapter a comparative study is proposed where three different
methods, based on different mathematical principles, but having in common the non-negativity
constraint are considered. NNMF, nICA and convex analysis for blind separation of mixtures of non-
negative sources (CAMNS) (see Chapter 3 for their detailed description) are applied on the full
magnitude HR-MAS spectra. In this way characteristic profiles for necrosis, high cellular tumor and
border tumor tissue are obtained, and the contributions (abundances) of each tumor tissue to the profile
of the spectra are provided. The study has a multifold purpose and evaluates:

= which of the considered nBSS methods performs best.

= which is the best feature input space to consider, i.e., the results on the full magnitude
HR-MAS signals and on dimensionally reduced features spaces are compared.

=  how the choice of the parameters for the considered nBSS methods influences the
results, mainly focusing on the: robustness when the algorithms are applied to
different datasets the number of sources to be calculated.

= whether the nBSS methods could provide similar results to histopathology, which
could further be easily interpretable by the clinicians.

6.1.2 Materials

The HR-MAS spectra of brain tissue samples from 52 adult patients presenting a glial tumor with
different degree of malignancy were considered. Based on the initial diagnosis (i.e., before
histopathological examination) the data were split in three subgroups: 27 grade IV glioblastoma tumor
(GBM), 7 grade III glial tumor (GIII) and 18 grade II glial tumor (GII). Data acquisition and
preprocessing was performed as described in Chapter 5, Section 5.2.1.

Post HR-MAS experiments 37 out of the 52 biopsy samples (22 GBM, 6 GIII and 9 GII) were
submitted for quantitative histopathological examinations. This analysis revealed that the samples
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present different histopathological tissue properties reflected in a variable content of highly cellular
tumor tissue, infiltrations with normal tissue and/or necrotic tissue. Additionally, for each sample the
percentage of each tissue property was calculated by measuring the total area of the biopsy sections
within a sample and then delineating the regions of interest. The values are revealed in Chapter 5, Table
5.1.

In a classical classification approach, each of the 52 HR-MAS spectra would have been assigned to one
and only one of the considered tumor subgroups, without identifying the contributions from necrotic
tissue and normal tissue within each case. However, a strong correlation between the histopathological
tissue properties and metabolic profiles coming from ex vivo HR-MAS has already been observed in
glial tumors (Croitor Sava et al., 2011b); see also the discussion in Chapter 5. Therefore, for diagnosis
purposes, it would be useful to decompose the HR-MAS spectra and identify the components reflecting
pure highly cellular tumor tissue, border tissue (with infiltrations from normal brain tissue) and/or
necrotic tissue and then determine their concentrations in each spectrum.

6.1.3 Methods

Non-negative matrix factorization

The principles of the methods are described in Chapter 3. For this study an NNMF implementation with
sparseness constraints (NNMFSC) on the sources, S, is considered as in (Kim and Park, 2007). Thus the
following optimization problem is solved.

" 2 .
HA}EI{HX_ ASHZF +77HAH2F +/”z‘,-:1HS(¥J 1} subject to 4,5 >0 (6.2)

. . . 2
where S(:,j) is the /™ column vector of S, 77 > 0 is a parameter meant to control the size of "A” r and

S > 0 balances the trade-off between the accuracy of the approximation and the sparseness of S. For
this study the default values 77 = 0.2 and £ = 0.1 were considered (Kim and Park, 2007).

NNMF is not a unique decomposition. Thus, (Kim and Park, 2007) propose an alternating non-
negativity constrained least squares implementation which is fast and guaranteed to converge to a
stationary point of the problem. The algorithm begins with the initialization of 4 with non-negative
values and then several sweeps (up to a maximum of 100) are performed till convergence by

computing:
A X ?
S -
\/? €1 xk 01 F

min subjectto § >0 (6.3)
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2
subjectto 4>0 (6.4)

min
A

) o)

where k is the number of sources, €,,, is a row vector with all components equal to one and 0

F

1xn 1S a

0 vector. 1  1s an identity matrix of kxk and 0 o & Zero matrix of size kxm. Each subproblem of the

type (6.3) or (6.4) is solved with a non-negative linear least squares active set method (Kim and Park,
2008).

CAMNS

Another novel approach that accounts for sparsity and non-negativity is convex analysis of mixtures of
non-negative sources (CAMNS) (Cha et al., 2008). It is a recently developed nBSS framework.
CAMNS is deterministic and is based on a special assumption called local dominance, which is closely
related to sparsity and states that each source exhibits a non-zero value for a certain feature for which
all the other sources have a zero value. Under the local dominance principle, the BSS criterion becomes
a convex analysis problem and can lead to a unique source separation with probability one, as detailed
in Chapter 3. Thus, the source signals can be perfectly identified in a blind fashion as described in (Cha
et al., 2008).

niCA

One possible approach to the complexity of the spectra is to assume that the different tissue types are
statistically independent. Following this principle, ICA has been previously considered in biomedical
signal processing and analyses of single voxel MRS (Lee et al., 2000; Ladroue et al., 2003) and multi-
voxel MRSI data (Szabo De Edelenyi et al., 2005; Su et al., 2008; Wright et al., 2009). These studies
have shown that ICA can provide an effective way to reduce the dimensionality of MR spectra. In the
study presented in this chapter a non-negative implementation of ICA which is based on a gradient
algorithm operating on pre-whitened data, as suggested by (Ola and Plumbey, 2004), is considered.
This approach is related to the ‘nonlinear PCA’ algorithms investigated by (Oja, 1999). The
independent sources are considered to be non-negative and well-grounded (see Chapter 3). The
algorithm is guaranteed to find a permutation of the well-grounded, non-negative sources. The idea
behind this is that an orthogonal rotation of the whitened observation vector into non-negative outputs
gives a positive permutation of the original sources. The proposed cost function minimum coincides
with the non-negative solutions (Oja and Plumbey, 2004).

Prior to applying nICA the dimension of the data was reduced. This step ensures the stability of the
algorithm when the size of the dataset is small compared to the dimension of the data as was
emphasized in (Hyvarinen, 1999). Commonly PCA and SVM are use to reduce dimension (Hyvérinen
and Oja, 2000; Kolenda, 2002). As in (Kolenda, 2002) the number of ICs was controlled by an initial
PCA projection from the original data onto a k£ dimensional subspace.
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6.1.4 Application to HR-MAS

The feature input space

The proposed nBSS techniques are applied on the magnitude HR-MAS spectra and on sets of features
obtained from the spectra. For the spectra n=716 points representing the magnitude HR-MAS signal in
the region of interest between 0.25 ppm and 4.2 ppm were used. For the feature case, two experiments
are designed. One where the concentration of 19 most visible metabolite peaks (see Table 6.1) are
considered (n=19) and one where the concentration of the most representative metabolites for
characterizing histopathological tissue properties (n=8) (Croitor Sava et al., 2011b; Cheng et al.1998),
are used. Although visible, Alanine (Ala) and Lactate (Lac) were not added to the set due to their
sensitivity to snap-freezing the samples, the temperature conditions and the unavoidable period of
ischemia during the biopsy procedure, which significantly alters them when using HR-MAS (Opstad et
al., 2008b; 2010).

Peak integration, a feature reduction method typical in NMR analysis (see Chapter 2, Section 2.2.3),
was used for extracting the concentration of the considered metabolites. Namely, the highest point in
the area to be integrated was identified for each metabolite, then the area bounds were fixed for each
metabolite individually to those ppm values at which peak slopes return to baseline, but keeping
symmetric intervals with respect to the highest point. Other metabolite quantification methods may also
be considered and should not influence the results, subject to the condition that they provide reliable
metabolite estimates. See Table 6.1 for a description of the metabolites considered in the two
experiments where 19 and respectively 8 metabolic features were used as input space and the
integration intervals considered for each metabolite.

Parameters to be considered

The study also questions the robustness of the considered algorithms when applied to slightly different
datasets, i.e., different input matrices X. Thus, firstly we build the matrix X from the 27 measured GBM
cases. Afterwards, we consider as input matrices X information coming from the available GII and GIII
glial tumor subgroups separately. Finally, the whole dataset of 52 cases (GII, GIII, and GBM) is
considered together as a single dataset.

For every experiment, the number of the sources, &, to be extracted has to be chosen. How the value of &
influences the results and the performance of the algorithms is also investigated. A logical assumption
is to choose k equal to the number of histological groups, if one presumes that the inter-patient
variability is not too large. Thus, for the GBM group if one requires S to have 3 components, then these
components should ideally represent the pure sources for necrotic, highly cellular and border tumor
tissue. 4 contains the coefficients of the linear combinations of the found sources and reflects the
abundance of the obtained sources within each sample. For GII and GIII glial tumor datasets, since the
samples mainly contain highly cellular tumor tissue and border tumor tissue, we started from k=2.
When considering all 52 cases, a k value up to 5 was tested. This choice is motivated by the high inter-
patient variability, since in addition to the histopathological tissue variability the samples present
different grades of tumor aggressiveness.



Metabolite

Lipid

Lipid

Lipid
N-acetyl-aspartate
Creatine

Choline
Phosphocholine
Glycero-phosphocholine
Glutamate
Glutamine
Glutamate
Glutamine
Taurine
Myo-inositol
Glycine

Myo-inositol

Glutamine + Glutamate group

Alpha glucose

Beta glucose

Performance measurement

Metabolite
abreviation

'Lip1'
'Lip2'
'Lip3'
'Naa'
or
'Cho'
'Pcho’
'GPCho'
'Glu'
'Gln'
'Glu2'
'GIn2'
"Tau'
'Myol'
Gly'
'Myo2'
'GIx'
'Glcalf
'Glcbet'
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Table 6.1 Metabolites

Integration area in Experiment Experiment

ppm n=19 n=8
0.84-0.91
1.255-1.285
2.79 -2.81
2.0-2.015
3.01-3.03
3.19-3.205
321-322
3.225-3.235
2.1-2.12
2.12-2.13
23-233
2.41-2.44
3.245-3.265
3.49 -3.525
3.53-3.55
3.58-3.61
3.76 - 3.78
3.83-3.86
3.86 - 3.89
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Firstly, to evaluate the accuracy of the proposed nBSS methods in identifying the pure tumor tissue
sources, a measure of the separation quality is performed. The nBSS results are validated by comparing
them against the histology findings (the standard reference on which diagnosis is based nowadays). To
this aim the spectra coming from samples classified as pure highly cellular tumor tissue, infiltrations
with normal tissue and necrotic tissue (more than 90% of the sample area is covered by one tissue type)
are considered as reference spectra. Then, the correlation coefficient, p , between the sources obtained

with NNMFSC, CAMNS and nICA, respectively, and the reference HR-MAS tissue models is

computed:

p:cov(Mk,Sk)

(6.5)
O-Mo-S

where cov stands for covariance, M, for the k" reference HR-MAS tissue model, S; for the k' obtained
sources and O is the standard deviation. The correlation coefficient takes a value between -1 and 1,
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where a value close to -1 indicates a negative correlation, close to O indicates that sources are
uncorrelated and close to 1 that the sources are highly correlated with the reference tissue.

Secondly, based on the mixing coefficients representing the contribution (abundance) of each source to
the spectra we can assign each case, based on the highest abundance, to the predominant tissue type
class. Additionally, for each case the percentage of necrosis, tumor cell density and infiltrations with
normal tissue is computed. For this, the source with the smallest abundance for each case was set to
zero and the percentage of the other two sources is then computed based on the new abundance matrix.
This choice was motivated by the glial brain tumor growth behavior where necrotic regions are
surrounded by highly cellular tumor cells and infiltrations from normal tissue are present at the border
of the affected area. Thus, as observed also in the histopathological study, necrotic and border tissue are
not present simultaneously in the analyzed biopsy samples. Moreover, this approach will allow us to
verify if the abundance matrix obtained with the considered BSS methods is correct with respect to the
tumor growth behavior. The results are then compared with the histopathological study and the mean
squared error (MSE) for the percentage assignment is computed as:

1 k % %his 5
MSE:;ZI“ (S,— Sk ) (6.6)

his
% %
where S} is the estimated percentage and Sk  is the percentage according to the histological analysis,

and £i=3.

6.1.5 Results

Source detection performance

For each experiment conducted in this study, a set of source components, S, has been obtained. All
three considered methods, nICA, CAMNS and NNMFSC respectively, provide consistent results and
mostly similar sources. In Figure 6.1 the components extracted from the GBM group, for an input of 8
metabolic features, when asking for three components are shown. For this test we observe that the
mutual correlation coefficients between the similar components obtained with CAMNS, NNMFSC and
nlCA are very high for necrotic and tumor tissue types (over 0.95). The border tissue component
obtained with nICA presents more contributions from tLips and tCho compared to the component
obtained with the other two methods.
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Figure 6.1 Constituent tumor tissue source profiles identified with CAMNS, nICA and NNMFSC.
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As one aspect of the study is to analyze to which extent the feature input space could influence the
results, Table 6.2 presents the results of the experiments conducted on the GBM group, when working
on the whole magnitude spectra (n=716) or on a reduced feature input space (n=8 or n=19, as defined in
Section 6.1.4). The accuracy of each method in extracting pure tissue sources, computed by means of
correlation coefficients between the obtained nBSS sources and the reference spectra are illustrated.

Table 6.2 The correlation between the obtained tissue sources and
the reference tissue models for different input feature spaces

n=716 n=19 n=8

NNMFSC

necrotic 0.97 0.97 0.99
tumor 0.69 0.65 0.72
border 0.91 0.92 0.91
CAMNS

necrotic 0.98 0.97 0.99
tumor 0.62 0.61 0.71
border 0.89 0.54 0.88
nlICA

necrotic 0.81 0.93 0.98
tumor 0.68 0.67 0.73
border 0.83 0.51 0.68

All methods identify with a very high accuracy the necrotic tissue pure component, as the correlation
with the reference model is mostly higher that 0.95 for all the considered feature input spaces. The
sources obtained on the full magnitude spectra (n=716), as well as on the extracted metabolic features
are clearly separated and are in agreement with the conclusions drawn in the literature (Cheng et al.,
1998). See Figure 6.1 and 6.2, where one can observe that the obtained necrotic tumor tissue source is
characterized by elevated peaks of lipids (Lip1, Lip2), while the rest of the metabolites are present in
very low concentrations.

For extracting the border tissue component, NNMFSC outperforms the other two methods. With
NNMESC, the correlation with the histopathology reaches more than 0.9 out of 1. The sources present
characteristic high peaks of NAA and Cr. The border tissue source obtained with CAMNS when
applied on full spectra reveals some contributions from tCho as well as high Gly concentrations which
would be typical for a highly cellular tumor tissue. With nICA, the border tissue component obtained on
the full magnitude spectra presents contributions from tLips and tCho. This phenomenon is noticeable
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also based on 8 features; see Figure 6.1, where the estimated source for border tissue appears in fact as
a mixture of tumor, necrosis and border tissue, although with a predominant contribution from border
tissue.

All methods are less accurate in extracting a component that would correspond to spectra of pure tumor
tissue in the brain. With CAMNS, the tumor tissue source presents levels of Cr that are higher than
what is concluded in the literature (Tong et al., 2004, Majos et al., 2004, Wright et al. 2009) and with
nICA, Lips are present in the source. Again, overall best performance is obtained with NNMFSC. As
one can see in Figure 6.2, Ala and tCho metabolic components are more elevated in the tumor
compared to the other sources.

Looking at the overall performance of the considered methods, results show that with NNMFSC the
obtained sources are the closest to the reference tissue models. Additionally, best overall accuracy for
NNMEFSC, as shown in Table 6.2, is obtained when considering an input feature space consisting only
of the most representative metabolites (n=38), followed closely by the full magnitude spectra input
space.

Interpretation of the abundance matrix

For each spectrum we obtain the mixing coefficients representing the contribution (abundance) of each
source within the spectrum. Thus, we can identify for each case, based on the highest abundance, the
predominant tissue class, as well as to compute the approximate concentration contribution from each
tissue type. These mathematical results were compared with the histopathological results. For this
comparison only the histopathologicaly confirmed cases could be considered (22 GBM, 6 GIII and 9
GII). NNMFSC can accurately identify the predominantly tissue class for 19 out of the 22
histopathologically confirmed GBM cases. With CAMNS and nICA 16 and 17, respectively, out of 22
histopathologically confirmed GBM cases, were correctly assigned to the predominant tissue class.
These results were also reflected in the percentages of contribution of each source to the cases, as a
good agreement was obtained between histology and the methods proposed in this study. The MSE is
mostly below 10 when considering the NNMFSC algorithm, see Figure 6.3.

Choosing the number of sources, &

In Figure 6.4 the results obtained on the dataset represented by all 52 glial tumors are presented, when
using NNMEFSC for different £ values (k=2,...,5). For k=2, the necrotic tissue component is accurately
detected. The second component presents characteristics which reveal a mixture between border and
highly cellular tumor tissue. For k=3, the three obtained sources present a high correlation with the
reference models for pure necrotic, highly cellular and border tumor tissue, respectively. For a k>3
necrotic and border tissue remain relatively stable, while the other components can not be clinically or
histopathologically interpretable. First source detectable is the one corresponding to necrotic tissue. Its
profile does not change radically for different k& values. Thus, adding another component does not
influence the results. For k=3 all the obtained sources present a histopathological meaning. These
results confirm our assumption that the best k& value is the one that reflects the number of
histopathological components present in the data. By choosing a smaller &, one would obtain impure
sources which would present contribution from more than one tissue type, while by choosing a higher £,
one would obtain components that do not have a histopathological interpretation.
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These results are also confirmed by similar experiments performed when considering each glial tumor
subgroup separately. For the GBM dataset, most meaningful sources were also obtained when
considering k=3. For the GII and GIII subgroups best performance is given for k=2. This can be
explained by the fact that the necrotic tissue type is not represented in these subgroups, as revealed by
the histopathological analyses (see Table 5.1 in Chapter 5). The two sources extracted from GII and
GIII groups, respectively, are highly correlated with border and highly cellular tumor tissue models.

NNMFSC sources . Reference models
full magnitude spectra

1 necrotic Lip2 necrotic Lip2
0.5 Lipt

Lip3
olacdbin P
4 35 3 25 2 15 1 05

! ) high
1 high cellular

cellular tumor b
tumor Gy Cho Cho
0.5
GlIx I I
0 h o
4 3.5 3 2.5 2 1.5 1 0.5
border border
Cr
05 or NAA

4 3.5 3 2.5 2 15 1
ppm

ppm

Figure 6.2 Tumor tissue sources obtained with NNMFSC, when applied on the magnitude spectra (left
column). Right column plots illustrate pure tissue samples, as indicated by histopathology.



126

error for n=8
100

- -@ - -error NNMFSC
80+ —# - error CAMNS

1 4 /\ |
2| /f\l/ /\f\ "

of o—# o v'\‘/# o/ / &* ‘L/*,

01234567 89101112131415161718 192021 22
histopathological confirmed cases

Figure 6.3 The MSE computed as in Eq. 6.6 obtained with NNMFSC and CAMNS, respectively, on
feature vectors (n=8). The error corresponding to nICA (not shown) is higher overall.

Additionally, a relatively high similarity can be observed between the sources obtained with NNMFSC
on the different tumor groups or on all 52 spectra. See Figure 6.5 where plots displaying the sources
extracted from all cases and from each glial tumor subgroup, respectively, are illustrated. The
metabolite feature space is represented by the 8 most representative metabolites.

Thus, the performance of the algorithm is not influenced by the number of available cases used as input
matrix. Nevertheless, the method will always identify only those histopathological classes that are well
represented in the data.

6.1.6 Discussion

In this study nBSS methods are used for obtaining characteristic profiles for each tissue subtype and
their concentrations within a spectrum. The interpretation of the results is strongly supported by an
extensive histopathological study. We show that NNMFSC, CAMNS and nICA can reliably answer the
problem of source separation when analyzing HR-MAS data. Still, NNMFSC overall outperforms the
other two methods, followed very closely by CAMNS. The similarity in the results obtained with
NNMEFSC and CAMNS could be a due to the fact that the methods rely on the same principles, i.e.,
they do not assume any independence or correlation, but sparsity is imposed. Still with CAMNS the
assumption of sparsity (namely the local dominance property) is too strong, in the sense that, when a
source exhibits a non-zero value for a certain feature, all the other sources must have a zero value. With
NNMSC, a trade-off between the accuracy of the approximation and the sparseness of S is allowed.
This is mainly important since for some metabolites it can happen that they exhibit peaks of different
concentration in more than one source.
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Figure 6.4 NNMFSC components calculated for the full dataset of 52 magnitude spectra, for k = 2,3,4, and 5.
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Figure 6.5 NNMFSC components calculated for 8 metabolic features, for GII, GIII, GBM and all glial tumor datasets.
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For nICA one imposes a strong assumption of independence and consequently uncorrelation.
Taking into consideration the nature of HR-MAS data, where correlations in the metabolic
profiles may still be present to some degree between the spectra form different tissue types,
such an approach is not the most suitable for our problem, as could be concluded from the
results. In reality, it would be hard to identify a 100% pure highly cellular tissue in glial
tumours. This tissue type will mostly exhibit some contribution from normal tissue or some
necrotic cells. Moreover, the metabolites describing the histopathological tissue properties are
correlated as shown in Chapter 5, (Croitor Sava et al., 2011b). Therefore, the extracted tumor
tissue source would always correlate to some extent to the other two histopathological tissue

types.

Choosing the correct £ is not as important as one might expect. It has been observed that once
a component is well represented in the data, it will be correctly identified by the proposed
nBSS algorithms, regardless of the value of k. These conclusions are in agreement with
(Szabo De Edelenyi et al., 2005). Also the dimension of the input space (the number of
spectra used for extracting the sources) is not influencing the results as proven by the
experiments described in Section 6.1.5.

With respect to the best input feature space to be considered, for best separation between
necrotic, high cellular tumor tissue and infiltrations, our results are in agreement with the
literature and show that NAA, Cr, Lips and tCho group are most representative for solving
this classification problem. Adding extra information will not bring any added value in the
performance of the considered nBSS methods. Additionally, by increasing the dimensionality
of the matrices (case n=19 and n=716), the problem becomes more expensive and also prone
to provide a solution that is less meaningful for the given problem. A reduction of the input
feature space to the most representative features would bring a two-fold advantage. On one
side, it reduces the computational time, and, secondly, we avoid bringing irrelevant
information into the problem.

Using the mixing coefficients we can compute the percentage of necrosis, tumor cellularity
and infiltrations with normal tissue for each case. This approach presents the advantage that
the results are closer in what concerns their interpretation to the histopathological output and
to the clinical interpretation.

Brain tumor tissue classification problems arising from in vivo magnetic resonance
spectroscopy can benefit from a similar approach, as described in Section 6.2.



6.2 Application to in vivo MRSI data

6.2.1. Introduction

As shown in Chapter 5 and in Section 6.1 of this chapter, there is a significant variability
between the ex vivo spectra coming from glial brain tumours as an effect of intra-tumoral
heterogeneity. This phenomenon, explained in detailed by histopathological studies, is also
reflected at the metabolic level. By applying nBSS methods on HR-MAS data one can obtain
characteristic profiles for each tumor tissue subtype and their abundance within a spectrum.
This finding provides relevant additional information for a better interpretation and
classification of brain tumor tissue. Brain tumor tissue classification problems arising from in
vivo MRS can benefit from a similar approach. Therefore this section will further extend the
study presented in Section 6.1 to MRSI data.

Although the MRSI technique is very interesting due to its non-invasive nature as well as due
to the possibility of exploring spatial information, the accuracy of MRSI in differentiating and
grading glial brain tumors is limited by the significant variability of in vivo spectra as an
effect of intra-tumoral heterogeneity. In gliomas one can observe distinct histopathological
tissue properties, such as viable tumor cells, necrotic tissue or regions where the tumor
infiltrates normal brain.

This study proposes a screening between these intratumoral histopathological tissue properties
within MRSI data by quantifying the abundance within each MRSI voxel for each
intratumoral histopathological tissue property. We assume that such an approach would
greatly assist in an improved diagnosis, prognosis and treatment planning in gliomas. From
the BSS methods analyzed in Section 6.1 NNMFSC will further be considered for this study,
as it has been shown to be most accurate in solving the addressed problem. Additionally,
nosologic images are drawn based on the extracted abundance maps, reflecting the presence
of necrosis, viable tumor cells or infiltrations in the MRSI grid.

6.2.2 Data

MRSI data of 7 patients with gliomas, histopathologically confirmed according to WHO
classification, were acquired at the University Hospital of Leuven (UZLeuven) on a 3T
Philips scanner (Achieva and Intera, Philips, Best, The Netherlands), using a PRESS pulse
sequence as the volume selection technique. The acquisition parameters are: FOV: 16cm x
16cm, VOI: 8cm x 8cm , samples size: 2048, number of signal averages: 1, shimming: pencil
beam shimming, first and second order. For each patient both water suppressed and
unsuppressed proton MRSI data were acquired as well as MR images (T;-weighted MRI
without contrast, T,-weighted MRI, T;-weighted MRI with contrast, FLAIR, DWI with
sequence b-value of 0 mm/s? , DWI with sequence b-value of 1000 mm/s?).
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The spectra were preprocessed using the Matlab platform and by water removal with
HLSVD-PRO (Laudadio et al., 2002), baseline correction and normalization (see Chapter 2,
Sections 2.1.7 and 2.1.8, respectivly). The baseline was corrected using an apodization
function as described in Chapter 2 and the normalization was performed with respect to the
water signal. Magnitude spectra are computed by taking the absolute value of the Fourier
transformed time-domain signals. Contributions outside the frequency interval [0.25, 4.2]
ppm were filtered out in order to keep only the contribution of the metabolites of interest and
to avoid expensive computations.

6.2.3 Methods

For each MRSI grid, NNMFSC is applied separately on the magnitude MRSI spectra in the
region of interest between 0.25 ppm and 4.2 ppm and on sets of features obtained from the
spectra.

A two step approach is implemented. This choice is motivated by the high heterogeneity of
the data reflected both at MRSI grid level as well as at the intra-tumoral level. Also, since
there are different tumor types and grades, in the first step we separate normal brain tissue
voxels from voxels with abnormal brain tissue, which should therefore contain predominant
tumor tissue. For this step, the value of & is set to 2 and the two obtained NNMFSC
components should typically represent the normal brain tissue and the abnormal tissue pattern.
Then, based on the highest abundance, each voxel is assigned to normal or abnormal tissue.
For selecting the abnormal tissue voxels one may use MRI images. Still, as shown in previous
studies, glial tumors are highly infiltrative and the area surrounding the enhancing region in
glioblastoma and the region where the gliomas infiltrate, appeared normal on the MRI.
Additionally, for the infiltrated non-enhancing/non-72 hyperintense areas, abnormal
Cho/NAA ratio levels were reported for gliomas (Di Costanzo et al., 2008). Elevated levels of
Cho were also observed in the surrounding region for gliomas in (Fan et al., 2004).

The NNMFSC results are validated by comparing them against MRI intensity enhancement
and by evaluating the Cho/NAA peak-area ratios within the grid. Spectra from areas with
obvious intensity enhancements were selected as tumor spectra.

In the second step, NNMFSC is applied within the region with abnormal tissue with the
purpose of identifying for each voxel within this region its predominant intratumoral
histopathological property corresponding to necrotic, high cellular or infiltrations. The results
are then used to construct nosologic images, by assigning each voxel to the tumor tissues type
with the highest abundance coefficient. In this step the number of components to be
extracted, £, is set to 3.

As mentioned above, two types of experiments were designed in this study. One where we
work with the full magnitude spectra and one where we work with metabolic features
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extracted from each spectra. For the second case AQSES-MRSI (Croitor Sava et al., 2011a),
an advanced metabolite quantification method for MRSI data, with which the available spatial
information is exploited, was considered. The method is described in details in Chapter 4.

For the metabolite features case, we considered a different number of metabolites for each
step. Thus, 11 observations, representing the concentration of the most representative
metabolites in separating tumor from normal tissue (NAA, Glu, Cre, PCh, Glc, Lac, Ala,
Myo, Tau and Lips at 0.9 and 1.3ppm), were used in the first step. Only 6 observations
representing the concentration of the most representative metabolites in identifying
intratumoral histopathological variability (Lips at 0.9 and 1.3ppm, Lac, Cr, NAA and PCh)
were further considered in the second step. This choice was based on the conclusion drawn in
previous studies which showed that there is a high correlation between the concentrations of
Lips, Cr, NAA and PCh group and the histopathological tissue properties (Croitor Sava et al.,
2009; 2011b; Cheng et al. 2000; Andronesi et al., 2008; Opstad et al., 2008a). Additionally, as
shown in Section 6.1, NNMFSC best performance in separating between histopathological
tissue types was reported for this set of metabolites. When conducting ex vivo MRS studies,
Lac levels might be highly affected by the sample handling procedure, such as changing the
sample volume in the MAS rotor, snap-freezing the samples, the temperature conditions. With
in vivo MRS these conditions do not occur and therefore Lac levels can be reliably detected in
the profile of the spectra. Thus, since Lac levels are reported in (Cheng et al., 2000) to
correlate with the level of necrosis, it was also considered in this study.

To compare the obtained sources with the ones obtained in the study described in Section 6.1
we computed the correlation between the histopathological tissue sources extracted with the
NNMEFSC algorithm on the MRSI data and the ones extracted on HR-MAS data in Section
6.14.

Although a direct validation of the results using histopathological analysis is not feasible
when analyzing in vivo MRSI data, for all voxels, the results were confronted with the tissue
labeling proposed by the expert spectroscopists.

6.2.4 Results

For each individual MRSI examination, a set of two components have been obtained in the
first step, as well as an abundance matrix. The results on a MRSI image of a patient with
glioblastoma are presented in Figure 6.6 which displays the extracted components and the two
corresponding maps where the abundance of each component for the different voxels is
displayed. The abundance matrix is drawn using a grey scale map showing the values of each
component for the different voxels. It takes values between 0 and 1, represented by black and
white, respectively, as shown in Figure 6.6.b.
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The contour of the abnormal tissue area is very similar to the contour reflected in the MRI
image. The first component is present in high concentrations in the center of the tumor, in the
necrotic area. Its metabolic profile is very different from the normal tissue component. It
presents elevated levels of Lips and Lac, while the concentration of the other metabolites is
very low. The abnormal tissue area contains many voxels where a mixture of these two
components is obtained. The second component, the normal tissue component, is present only
in the healthy part of the brain and shows a high degree of similarity with the measured
spectra obtained from healthy tissue, with high NAA/Cho levels and with metabolic profiles
very close to the conclusions reported in the literature (Devos, 2005b).

We also compare the results obtained on the full magnitude spectra with the results on the
extracted features. See Figure 6.7, where each voxel is labeled based on the highest

abundance component. Results obtained on magnitude spectra and metabolite feature space
show that with both approaches we obtain very similar tissue assignment.
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Figure 6.6 a. MRI T2-weighted image of a glioblastoma patient. The contour of the MRSI
grid is marked with green on the image. In b. the results of the first step using NNMFSC are
visualized: abundance maps showing the voxels identified as abnormal tissue and
predominantly normal brain tissue (the upper part of the image); lower part shows the
component profiles as identified with NNMFSC.
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Figure 6.7 Plot showing the label of each voxel, within the MRSI grid, based on its highest
abundance component. Results on magnitude spectra and metabolite feature space are
compared.

In the second step, NNMFSC results applied in the abnormal tissue region, for k=3, are
converted to nosologic images. The voxels identified as predominantly necrotic tissue, voxels
with viable tumor cells and voxels with predominant normal brain tissue are visualized. Each
histopathological tissue class is represented by a different color and therefore the images are
easily interpretable. See Figure 6.8, where the results on the GBM patient after the second
step are presented.

b.
Figure 6.8 a. MRI T2-weighted image of a glioblastoma patient. The contour of the MRSI
grid is marked with green on the image. b. Nosologic image showing the voxels identified as

predominantly necrotic tissue (orange color), voxels with viable tumor cells (blue color, dark
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blue stands for high cellularity; lighter blue reflects higher levels of infiltrations from normal
tissue, the lighter the blue the higher the percentage of infiltrations) and voxels with
predominantly normal brain tissue (dark red). This image was created using NNMFSC, with
metabolite concentrations as features.

Lip

Lip

Figure 6.9 The NNMFSC 2" step sources obtained for k=3.

Figure 6.9 illustrates the components obtained in the second step. Using as reference the
tissue models defined in Section 6.1 as necrotic, border and highly cellular tissue we can
assigned each component to a histopathological tissue class. The necrotic tissue component is
very similar to the abnormal tissue component identified in the first step, with the mutual
correlation coefficients of 0.96, and is present in high concentrations in the center of the
tumor area. The border and the highly cellular tissue component are surrounding the necrotic
tissue area. Where the infiltrations with normal tissue are high, also the levels of NAA and Cr
are elevated, while in the highly cellular regions high levels of PCho are observed.



136

6.3 Conclusions

The nBSS methods proposed in Section 6.1 for obtaining characteristic profiles for each tissue
subtype and the abundance of each source within a spectrum can reliably answer the problem
of source separation when analyzing HR-MAS data. Moreover, we can decompose the
observed MRSI grid into constituent tumor tissue sources with different predominant
intratumoral histopathological properties and further quantify the abundance of each
considered tissue source which can then be explored as nosologic images. This approach can
provide relevant additional information for a better interpretation and classification of in vivo
MRSI data and therefore enhance its contribution to brain tumor classification. In particular,
this method can be of added value in addressing difficult questions such as the grading of glial
tumors or differentiating metastasis from glioblastoma. Also it requires no previous training
set, which often can be a problem when dealing with new measurements or with rare tumors.

The finding in this study can provide relevant additional information for a better interpretation
and classification of brain tumor tissue in ex vivo high resolution MRS and in vivo MRS(I),
respectively.
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Chapter 7

Fusing in vivo and ex vivo NMR for
brain tumor classification

This chapter® describes a study on classifying short echo-time brain magnetic resonance
spectroscopic imaging (MRSI) data by applying a model-based canonical correlation analysis
(CCA) algorithm and by using, as prior knowledge, multimodal sources of information
coming from high resolution magic angle spinning (HR-MAS), MRSI and magnetic resonance
imaging (MRI). The potential and limitations of fusing in vivo and ex vivo nuclear magnetic
resonance (NMR) sources to detect brain tumors is investigated. Various modalities for
multimodal data fusion are presented, the effect and the impact of using multimodal
information for classifying MRSI brain glial tumors data is studied and an analysis on which
parameters influence the classification results is performed by means of extensive simulation
and in vivo studies. Special attention is drawn to the possibility of considering HR-MAS data
as a complementary dataset when dealing with a lack of MRSI data needed to build a
classifier.

7.1 Introduction

Several in vivo and ex vivo NMR techniques are commonly used in the diagnosis and
prognosis of brain tumors. Among them, conventional MRI techniques essentially assess
anatomy, but they are often not able to characterize the heterogeneous growth of cancer tissue
and to identify tumor type or grade. To address these issues, MR spectroscopy (MRS), and
especially its multi-voxel approach, MRSI allows the spatial mapping of metabolites. Ex vivo
high resolution NMR techniques are also often considered if one is interested in an accurate
biochemical profile of brain tissue. Since a good correlation between ex vivo HR-MAS and in
vivo MRS has been reported (Opstad et. al., 2010) one can consider using HR-MAS to
improve the interpretation of the metabolic biomarkers that are visible with in vivo NMR.
Additionally, with ex vivo HR-MAS the tissue integrity is not extremely damaged (Martinez-
Bisbal et al., 2010) and this is an advantage since it allows one to perform, on the same tissue

4 Croitor Sava AR, Martinez-Bisbal MC, Laudadio T, Piquer J, Celda B, Heerschap A, Sima DM and
Van Huffel S. Fusing in vivo and ex vivo NMR sources of information for brain tumor classification.
Accepted for publication in Journal of Measurement Science and Technology. 2011.
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sample, multimodal studies including subsequent genomic, proteomic or histopathological
analyses and, therefore, to obtain a direct comparison between all these techniques.

Nowadays multiple acquisitions of the brain with different techniques are getting very
common. Combinatorial approaches, where different techniques are correlated or compared
for assessing the tumor type and grade have been previously proposed (Barton et al., 1999;
Cheng et al., 2000; Tugnoli, et al., 2006; Tzika et al, 2007; Righi et al, 2009; Wright et al.,
2009; Lopez-Gines et al., 2009, 2010; Ferrer-Luna et al., 2009, 2010). These studies, where
multiple data sources are considered, can provide further insights into the biology of the brain
tumors and improve the diagnosis. Still, in all these studies the multimodal sources of
information are explored individually and then overlaid to demonstrate the relationship
between them. It has been shown in (Simonetti et al., 2003, 2005; Devos et al., 2005a; De Vos
et al., 2007; Luts et al., 2009a; Laudadio et al., 2005, 2008) that fusing MRI and MRSI
information improves brain tumor classification compared to the use of information of each
source alone.

In this chapter a multi-center study where multimodal sources of information coming from
HR-MAS, MRSI and MRI are integrated for the classification of glial brain tumors is
proposed. The novelty of the approach relies on fusing various sources of information,
demographically heterogeneous and acquired using different biomedical data acquisition
protocols. The purpose is to explore the common features as well as the complementarity in
the data, and, therefore, to take advantage of both metabolic and anatomical information.

In order to fuse multimodal sources of NMR information, reliable and robust classification
strategies must be considered. The classification methodology proposed in this study is based
on the canonical correlation analysis (CCA) algorithm (Golub and Van Loan, 1996). CCA
has been shown to be a good framework for fusing multimodal biomedical data and it has
already successfully been applied to brain data (De Vos, et al., 2007; Laudadio et al. 2005;
Correa et al., 2008, 2010; Li et al., 2009). CCA allows us to perform a multivariate analysis
where different sources of information are integrated in the classification algorithm. For this
study a model-based CCA approach based on investigating the goodness-of-fit of the data to
some prior knowledge is considered.

Since in supervised classification one may have to deal with complications such as the limited
number of samples available for analysis, firstly, the problem of lack of data available a priori
for building a model for the analyses based on the CCA algorithm was tackled. Then, the
possibility of using HR-MAS data as a complementary dataset for building the models was
explored. Two different approaches for improving the classification results by fusing
multimodal information are proposed: integrating multiple datasets or multi-channel
modeling. Additionally, for both approaches the model accounts for inter-patient variability.
To assess the quality of the proposed method and to investigate which parameters influence
the classification results, an extensive simulation study is carried out and several in vivo
MRSI examples of brain tumor are analyzed.
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7.2. Materials

7.21 Tumor data description

Ex vivo HR-MAS data

For this study a dataset of HR-MAS measurements acquired on 52 patients as part of the
eTUMOUR project was considered. The details on the acquisition and the preprocessing of
these data are described in Chapter 5.

Although all samples were initially labeled as glial brain tumors with different degree of
malignancy (27 glioblastomas (GBM), 7 grade III glioma (GIII), 18 grade II glioma (GII)),
the histopathological analysis performed post HR-MAS analysis on the same tissue part used
in the HR-MAS analysis revealed a high variability in the content of each sample. Therefore,
they present variable contributions from highly cellular tumor tissue, infiltrations with normal
tissue and/or necrotic tissue. 12 of the 52 samples presented very high infiltrations (over
70%) from normal tissue, revealing metabolic patterns that are typical for normal brain tissue,
as described in (Croitor Sava et al., 2011b). Since the HR-MAS spectra coming from these
samples were not representative for the tumor tissue types considered in this study they were
grouped separately. The other 40 out of 52 spectra within the HR-MAS datasets were then
split in three subgroups as follows: 13 GII, 5 GIII and 22 GBM.

In vivo MRI and MRSI data

In vivo NMR measurements on 25 patients with a brain tumor were performed in the Radboud
University of Nijmegen Medical Centre (RUNMC). The study was approved by the ethical
committee of the RUNMC. Each patient tumor type was determined by expert consensus and
histopathological validation followed the rules of the World Health Organization (WHO).
Since for one of the patients no consensus was reached, the data from this patient were not
used. Therefore for the statistical study 24 patients were considered.

For each patient both water suppressed and unsuppressed proton MRSI data and a set of MR
images were acquired. The latter consisted of T1 weighted (TE/TR=15/644ms), T2 weighted
(TE/TR=16/3100ms), proton density weighted (TE/TR=98/3100ms) and Gadolinium (Gd)
enhanced T1 (15 ml 0.5 M Gd-DTPA) images. The acquisition was performed on a 1.5T
clinical MR system (Siemens Vision), using 2D STEAM pulse sequence with the STEAM
box positioned in a transversal plane through the brain showing the largest tumor diameter in
the Gd contrast enhanced image. The MRSI parameters are: 16x16x1024 samples,
TR/TE/TM=2000 or 2500/20/30ms, slice thickness = 12.5 or 15 mm, FOV (field of view) =
200 mm, spectral width = 1000 Hz and NS=2.

All water suppressed MRSI spectra were semi-automatically preprocessed as follows:
filtering of k-space data by a Hanning filter of 50% using the LUISE software package
(Siemens, Erlangen, Germany), zero filling to 32 x 32 and spatial 2D Fourier transformation
to obtain time domain signals for each voxel, eddy current correction, water removal with
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HLSVD-PRO (Laudadio et al., 2002), frequency alignment using a semi-automatic procedure
as described in (Simonetti et al., 2003) and baseline correction using an apodization function
as described in (Poullet, 2008). Zero-order phase was already corrected during eddy current
correction. Manually, all first order phases were adjusted. Finally, all spectra were normalized
with respect to the unsuppressed water signal. For more details on these preprocessing steps
see also Chapter 2, Section 2.1.

From each patient, several spectra from voxels located in the tumor area of the MRSI grid, as
well as from normal appearing regions were selected, resulting in a total of 379 spectra.
Spectra with the same pathology were then grouped, resulting in an MRSI dataset of 176
spectra for GII, 57 spectra for GIII, 70 GBM spectra and 76 spectra for normal tissue from
patients.

7.2.2 Harmonization of multimodal data

A multi-center study in which multimodal data (HR-MAS, MRSI and MRI) are combined is
proposed. The fusion of multimodal datasets is a challenging problem since the data are
dissimilar in nature. In addition the considered datasets are heterogeneous in demographics
and data acquisition protocols. To overcome this problem we propose a feature-based
approach.

For harmonizing the spectral information coming from MRSI and HR-MAS data, a
dimensionality reduction of the available data is performed, by quantifying the most important
metabolite concentrations using peak integration. We emphasize that all spectroscopic data
are based on hydrogen proton (‘H). The following 10 metabolites were considered: Lipl
(lipids at 0.9ppm), Lip2 (lipids at 1.3 ppm), Lac (lactate), Ala (alanine), NA4 (N-acetyl-
aspartate), Glx group (glutamine - Gln and glutamate - Glu), Cr (creatine), Cho (choline), Tau
(taurine), Myo (myo-inositol) + Gly (glycine). The chosen metabolites are important
biomarkers for separating different tissue types within the brain and present a high correlation
in ex vivo and in vivo measurements (Opstad, 2010). Thus, for each MRSI and HR-MAS
spectrum, a vector with 10 metabolite concentrations, further called spectral feature vector, is
obtained.

The linewidth and SNR differences between in vivo and ex vivo spectra make us reasonably
think that different strategies are required to extract relevant features. Thus, different
integration intervals are considered for HR-MAS and MRSI spectra, respectively (see Table
7.1).

Due to peak overlap and relatively low spectral resolution that characterize the MRSI
measurements at the clinical field strength considered in this study, Lac, Ala and Lip2 were
extracted as one feature, Glu and GIn were also grouped, the same for Myo and Gly, as well
as Glu, Giln and Ala, which overlap around 3.74 ppm.
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Table 7.1 Integration intervals: MRSI vs HR-MAS spectra

Metabolite MRSI HR-MAS

Lipl [0.835-0.965] ppm [0.860-0.920] ppm

[1.320-1.340] ppm (Lac)
[1.450-1.490] ppm (Ala)
[1.300-1.320] ppm (Lip)

Lac + Ala +Lip2 [1.265-1.395] ppm

NAA [1.955-2.085] ppm [1.955-2.085] ppm
Glu+Gin [2.135-2.265] ppm {22'939900'_22' .15700]]£’£1 ((é}lﬁl))
cr [2.955-3.095] ppm [3.010-3.030] ppm
Cho [3.135-3.265] ppm [3.135-3.245] ppm
Tau [3.375-3.505] ppm [3.390-3.420] ppm
mI+Gly [3.495-3.625] ppm [3.500-3.620] ppm
Glu+Gln+Ala [3.685-3.815] ppm [3.720-3.800] ppm
cr [3.885-4.015] ppm [3.910-3.940] ppm

For HR-MAS, the considered metabolites were quantified separately. Peaks which were
grouped together in short-echo time 'H MRSI spectra were grouped in the same manner in
HR-MAS spectra, by summing up their corresponding integrated areas into one feature.

Spectral information is also combined with imaging information coming from MRI
measurements and the harmonization of these sources is performed, as described in (Simonetti
et al.,, 2003), by lowering the resolution of the MR images to the MRSI voxel size.
Specifically, the images with 4 contrasts are aligned with respect to the MRSI image and the
MR pixel intensities within each spectroscopic voxel are averaged out to achieve the low
resolution of the MRSI grid. Hence, this yields for each MRSI voxel one vector of 4 variables,
further called the image feature vector. The image intensities were normalized by dividing
each intensity value by the highest intensity in its corresponding MRI image.

Finally the resulting MRSI, HR-MAS and MRI feature vectors are scaled to be in the same
numerical range. More precisely, the arithmetic mean of each feature vector is subtracted
from its elements, so that the new elements are centered around zero, and the new vector is
scaled by division to its Euclidean norm.
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After performing the dimensionality reduction of the data using the above-described feature-
based approach, three new datasets are obtained: one consisting of 379 MRSI spectral feature

vectors, S mrsr » one of 379 image feature vectors, S mr; and one of 52 HR-MAS spectral

feature vectors, S HR—MAS -

7.3 Methods
7.3.1 Model-based CCA

To illustrate the idea of fusing ex vivo HR-MAS, in vivo MRSI and MRI information, several
simulated and in vivo experiments were designed. In all these experiments a model-based
approach of the statistical method CCA, which is explained in details in Chapter 3, is
considered. This method has recently been successfully applied to classify prostate and brain
MRSI data (De Vos et al., 2006; Laudadio et al., 2005, 2008).

During an MRSI acquisition, spectra are measured in a grid of voxels. Inspired by (Laudadio
et al., 2005), we want to assign each voxel to a certain tissue type by computing the maximum
canonical correlation coefficient between the information available for the voxel of interest
(x) and the tissue models obtained based on the information available a priori (y). Since there
is a high probability that the voxel under investigation belongs to the same tissue type as the
neighboring voxels, when defining the components of x spatial information coming from the
voxels surrounding the voxel of interest is included. To this aim a symmetric 3x3 spatial
model was considered (the adjacent voxels plus voxels on the diagonal are considered as
neighbors, giving a total of 8 voxels). This means that, for example, for classifying the voxel
on position 5 shown in Figure 7.1, we compute the x variable as:

X =[x5,(x; +x9)/2,(xy +x)/2,(x3 +x7)/2,(x4 + xﬁ)/2]T , where for each position

i we denote the corresponding feature vector with x; .
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v
CCA

Figure 7.1 Schematic representation of CCA when applied to a 3x3 region of MRSI voxels.

Since for each voxel we have access to both, MRSI and MRI information, X;, where

i=1,...,9, is defined as a feature vector containing 14 entries by concatenating 10

metabolite estimates extracted from the spectrum of the i " voxel and 4 image intensities
extracted as described in Section 7.2.2, alongside each other.

For each tissue class considered in this study a model, y, so-called subspace model, is

computed by two vectors:

N =[§’§MR1]

_r1st o
V2= L PC[S ’SMRI]]

y= (7.1

where § represents the mean of all the considered spectral feature vectors, S, extracted from
the a priori available datasets of validated Sjzs; and/or Syz_14s data. § mry 1S the mean of all
the available Sy, data. Thus, y; consists of 14 entries: 10 spectral features and 4 image
intensities concatenated alongside each other. In order to model the natural inter-patient
variability, a second component ( y,) is defined as the first principal component, 1* PC,
computed by performing principal component analysis (PCA) separately on the matrices §
and S urr - These were obtained by mean centering the previously considered matrices S and

Syrs. For each tissue type a distinct subspace model is defined by considering only the a priori
available information belonging to the same tissue type.
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Once x and y have been defined, CCA is applied to each voxel so that a correlation map is

obtained for each tissue type. These correlation maps are then compared, assigning to each
voxel the tissue type corresponding to the largest canonical correlation coefficient. The results
are then visualized using nosologic images, which are constructed such that all voxels of the
same tissue type are visualized with the same color (Szabo de Edelenyi et al., 2000). These
images can be easily interpreted by radiologists and physicians and, along with clinical and
radiological information, can improve the accuracy of the diagnosis.

7.3.2 Simulation study

Several simulated experiments are performed to test the performance of the methods for
differently sized datasets used in building the subspace model. Additionally, different
modalities to combine multimodal information are considered, as further described in this
section.

For the simulation study the available datasets are randomly split in two subsets: one used for
building the MRSI simulated grids and one used for building the a priori model. This
procedure is repeated 30 times for each experiment and thus the results presented in this study
will be the average CCA performance over 30 simulated MRSI grids (10 for each tumor type
(GII, GIII and GBM)). Also new subspace models are computed with each repetition since
different a priori information is considered.

All simulated MRSI grids present two tissue regions: a region of 5x5 tumor voxels in the
upper left corner and normal tissue in the remaining ones. When defining the voxels x; and the
subspace models y, spectral features and imaging features are merged in one vector, see (7.1).
Thus, each voxel consists of 14 features (10 metabolite concentrations and 4 image
intensities). In Figure 7.2, a simulated MRSI grid is visualized.

Performance for differently sized datasets used in building the tissue subspace model
The behavior of CCA for different size datasets used in building the tissue subspace model is
analyzed. We tested the performance of CCA when considering large datasets by using all the
available MRSI and MRI information (i.e. 176 GII, 57 GIII, and 70 GBM) and, then,
gradually and randomly reducing the size of the dataset to 10 GII, 10 GIII and 10 GBM.
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Figure 7.2 Feature vectors of a simulated MRSI grid. Left upper corner square (red contour):
GBM tissue, rest of the grid: normal tissue.

Adding complementary information coming from HR-MAS

With this experiment we tackle the problem of lack of data needed to build the subspace
models. We analyze to which extent HR-MAS can complement MRSI in building the
subspace models and help in improving the classification results, when this problem is
encountered. One approach is to merge MRSI and HR-MAS information by stacking the
feature vectors extracted from the two types of spectra into one matrix,

S=[Syrss, o35 HR_MAS]T , and afterwards to compute each subspace model, y, for each

tissue type, including the MRI image features from the Sy, dataset, as well, as defined in
(7.1). This approach is further called data integration.

Another approach is to consider different channels of multimodal sources of information
coming from both the MRSI and HR-MAS datasets when computing y. Thus, a subspace

model from each data source is computed separately and then both are merged into a final
subspace model. Thus a subspace model where the y variable now contains 4 components, 2

coming from the MRSI data and 2 coming from the HR-MAS data, is obtained:

= [EMRSI’EMRI]

st o
_ y2_l PC[SMR.S‘IsSMRI] (12)

V3= [§HR—MAS’§MR1]
V4= 1 PC ~

[SHR—MAS ’SMRI ]
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This modality of computing the subspace model is further referred to as multichannel
approach.

The performance of CCA for the two approaches proposed for building the subspace model is
analyzed and compared for various scenarios where HR-MAS information is added gradually.
Thus, various combinations of (1;,1,), where 1; represents the number of MRSI data and 1, the
number of HR-MAS data, are considered in the subspace model: (0,0), (5,0), (10,0), (all,0),
(0,10), (5,10), (10,10), (all,10), (0,30), (5,30), (10,30), (all,30), (0,all)), (5, all), (10,all), (all,
all).

Performance measurement

Each voxel within the simulated MRSI grids is classified applying CCA and the performance
of the classification is evaluated by computing the area accuracy rate (AAR) and the weighted
accuracy rate (WAR) (Guyon, 2006a; 2006b; Lewicki and Hill, 2006), as defined in (7.3) and
(7.4) below. The AAR value provides information on the degree of reliability of the method in
detecting the tumor region, WAR provides information on the method’s ability in
differentiating the tissue types characterizing the lesion, i.e., in assigning each voxel to the
right tissue class.

AAR = atbtct+d (7.3)
A+B+C+D

WAR=i £+ﬁ+£+i (7.4
N\4 B C D

where a, b, ¢ and d represent the number of correctly predicted outcomes for normal, GII, GIII
and GMB tissue respectively. A, B, C and D represent the number of voxels belonging to
normal, GII, GIII and GBM, respectively. N is the total number of classes (in our case N = 4,
as we have 4 tissue types).

7.3.3 In vivo study

In order to verify to which extent the conclusions drawn in the simulation studies are
consistent with real conditions, we further test the approaches described above on real-life
case studies. Thus, for the in vivo study several patients from the 24 patients with MRSI
measurements described in Section 2 were selected. As already mentioned, CCA assigns each
voxel to a tissue class based on the highest canonical correlation coefficient value. Nosologic
images are drawn, where each voxel is colored according to the tissue class it belongs to as



147

follows: dark blue is used for normal tissue, and yellow, red and orange are used to color the
tumor voxels of GII, GIII and GBM tissue, respectively. The results obtained by all
considered approaches used in building the subspace model are reported and compared
against the clinical outcome.

7.4. Results

7.4.1 Simulation study

Influence of the size of the dataset used to build the tissue subspace model

A decrease in performance is observed when building the subspace models from a small
number of data, see Figure 7.3. In particular, the WAR value presents a decrease from 91.4 %
(for a dataset with more than 50 data) to 76.2% (for a dataset of 10 data) when analyzing the
GII simulated MRSI grids. Generally, the accuracy of the classifier shows to be positively
correlated to the number of available data used to build the subspace model: the more samples
we include, the better performance we achieve.
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Dataset size Dataset size

Figure 7.3 WAR (left) and AAR (right) mean values obtained over 10 simulated MRSI grids
for each tissue type are presented for different sizes datasets used to build the tissue subspace

models. The black error bars indicate the maximum and minimum value of WAR and AAR
during the repeated radomized simulations.

Adding HR-MAS information when building the subspace model

Results show that both approaches considered for adding complementary HR-MAS
information when building the subspace model, data integration and multichannel approach,
respectively, improve CCA classification results when not enough MRSI data are available.
Especially for the GII tumor group an improvement in accuracy up to 8% is obtained when
adding extra information coming from HR-MAS, compared to the case when considering a
dataset of 10 or less MRSI data, see Figure 7.4. For the GIII case, the increase in accuracy is
not significant. This can be explained by the fact that we have a set of only 5 HR-MAS
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signals for this type of tumor. Therefore, even by complementing the 10 data of the MRSI
dataset with 5 new HR-MAS data, we are still dealing with a small size dataset used to build
the tissue subspace model.

The general trend is that when not enough information of one source (e.g., MRSI) is available
for one or more tissue classes, then, using complementary information coming from HR-MAS
data when building the subspace model keeps the performance of CCA to a reliable level. On
the other hand, when sufficiently large datasets of one source (e.g., MRSI ) are available for
one or more tissue classes, then adding extra HR-MAS information to the MRSI datasets does
not bring any statistically significant improvement to the classification results when
considering the data integration approach. On the contrary, with the multichannel approach
for GII tumor classification an increase in the WAR value to almost 96% is obtained, see
Figure 7.5. This could be due to the fact that by considering a multichannel approach when
building the subspace model a four-dimensional subspace as in eq. (7.2) is built instead of a
two-dimensional subspace (1). Consequently, 4 coefficients @, instead of only 2 are

optimized such that the correlation between X and Y is maximized. This offers more flexibility
in exploring all correlations between each of the two types of information used for building
the model and the data.

MRS| cases 00 HR-MAS cases MRS| cases 0 HR-MAS cases MRS cases HR-MAS cases 0

Figure 7.4 AAR (top) and WAR (bottom) mean values obtained over 10 simulated MRSI grids
for each tumour type, for different number of MRSI and HR-MAS data considered in building
each subspace model. Data integration approach was considered in building the subspace
model. (For GIII we have a total of 5 HR-MAS data and, therefore, the values are not
changing through the plot for HR-MAS when considering 10 and all available data.)
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Figure 7.5 WAR mean value over 10 simulated MRSI grids for each tissue type: comparison
between the multichannel approach and data integration approach when considering large
MRSI and HR-MAS datasets. The black error bars indicate the maximum and minimum value
of WAR during the repeated randomized simulations.

When using only HR-MAS data to compute the tissue subspace models (in Figure 7.4, note
the values corresponding to 0 MRSI cases), the accuracy of the classifier is relatively high,
especially for classifying GIII and GBM tumor types. Although the performance for this
specific situation does not reach the level of performance obtained with a subspace model
computed from large representative MRSI datasets (see in Figure 7.4 the values
corresponding to the scenario (0, all) against (all, 0)), we can still build a classifier that is able
to provide satisfactory results for classifying MRSI data. Thus, results show once more that
these two NMR techniques (HR-MAS and MRSI) can complement each other.

7.4.2 In vivo study

Nosologic images

An example of application on an MRSI grid from a patient with low grade astrocytoma (GII)
is shown in Figure 7.6. The tumor lesion is localized in the left upper corner of the MRSI grid.
The results obtained with CCA are translated into nosologic images and are presented in
Figure 7.6.b-e. The area of the tumor is correctly detected by all the considered approaches
(CCA where only MRSI data are used in building the model, only HR-MAS data are used in
building the model, all MRSI and HR-MAS data are used in building the model with the data
integration approach and all MRSI and HR-MAS data are used in building the model with
the multichannel approach for 7.6.b, 7.6.c, 7.6.d and 7.6.e, respectively) and no isolated
tumor voxels appear in the healthy tissue area. Regarding the accuracy level for detecting the
tumor type, differences can be noticed between the considered approaches. Both 7.6.b and
7.6.c assign some voxels to GIII. This can be explained by the fact that the spectra within
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these voxels present higher levels of Cho and lower levels of NAA compared to the rest of the
tumor area, which is typical for aggressive grade tumor and/or high cellularity tumor tissue. In
7.6.d the entire area of the tumor is assigned to GII. Still, some voxels of normal tissue are
detected inside the area of the tumor. The result closest to the clinical validation is the
nosologic image obtained for 7.6.e.

W Normal Gll | Jell] W ceM

Figure 7.6 a. T2 MRI image of a brain affected by tumor; nosologic images obtained with
CCA for b. all MRSI cases used in building the subspace model, c. only HR-MAS cases are
used in building the model, d. all MRSI+HR-MAS cases are used in building the model with
data integration approach e. all MRSI and HR-MAS cases are used in building the model with
multichannel approach.

The CCA performance for the real-life case studies is similar to the performance obtained in
the simulated studies and results are in consensus with the clinical outcome.

7.5 Discussion

For this study, as we had access to three different sources of information, the input space (i.c.,
prior available database) could be either spectral information coming from MRSI data,
information coming from HR-MAS spectra, a set of image intensities coming from MRI data,
or the combination of all described sources. It is very common to consider a classification
using these sources separately. Since each of the input data sources can add extra information
to the classification problem, a multimodal approach for fusing all the available information
seemed as a reasonable solution in this study. Previous reports have shown that, when
classifying MRSI data, a significant improvement in the performance of the classifier is
obtained by taking into account MRI information as well (Devos et al., 2005a; De Vos et al.,
2007; Luts et al., 2009a; Laudadio et al., 2005, 2008). We further explored this idea for
analyzing the behavior of a classification method that combines information coming from
MRSI, HR-MAS and MRI measurements. As results show, fusing multimodal sources
represents a promising approach to improved brain tumor classification.
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A challenging problem in this study was the harmonization of all the input spaces due to the
fact that we have to manage the use of very different sources of information/data, obtained
with different measurement techniques, as well as the use of data coming from different
clinical centers. The problem was overcome by considering a feature-based CCA approach,
where common characteristic features from all the different data types are extracted and a
normalization of the data was performed.

Since the performance of the model-based CCA algorithm proposed for this study is directly
dependent on the prior available observations used in building the model, special attention is
paid to the possibility of using HR-MAS data as a complementary dataset when dealing with a
lack of MRSI data needed to build a classifier. It is worthwhile to stress that the model choice
dictates the detection performance. We evaluate the CCA performance when solving the
aforementioned problem either by adding HR-MAS data to the in vivo database, or
considering only HR-MAS datasets for building the subspace model, see Section 7.3. For the
latter case we obtain lower performance than when considering also MRSI information in
building the subspace model. Still, taking into consideration the fact that totally different
datasets coming from different centres and acquired with different techniques (HR-MAS data
for building the model and MRSI data for testing the performance) were used, these results
show the potential of combining heterogeneous sources of information for tissue typing (e.g.,
in brain tumour recognition) which is particularly interesting when no information of one
source (e.g. MRSI) is available for one or more tissue classes. Thus, by determining
metabolite concentrations from the tissue samples with HR-MAS and using this information
to define the MRS metabolite profiles found can help to the construction of in vivo MRS
classifiers. For the GII tumor, the performance of CCA is lower than for the other two tumor
types. We believe that there are many factors that can explain these results. First of all, when
analyzing tissue samples, i.e., HR-MAS data, the sampling procedure is crucial for
homogeneity. In most NMR experiments, pH and temperature must be tightly regulated to
ensure homogeneity across peak positions and amplitude, as there is a strong dependence
between a spin resonance frequency and its local environment (Waters et al., 2000). Some
experimental variables, like the effects of changing the sample volume in the MAS rotor,
snap-freezing the samples, the temperature could have an influence on the estimated
concentration of some metabolites. On the other hand, the variability among the glial tumor
spectra may be large due to the fact that the same type of tumor may include molecular
subgroups which may greatly affect the concentrations of some metabolites.

We have explored two approaches for building the model that combines both sources of
information. Data integration approach is straightforward, in the sense that no distinction is
made between the sources of information, because the extracted features are treated in
common. Therefore, feature vectors from MRSI and from HR-MAS are grouped into a single
dataset, from which the mean and the first principal component are extracted as model y. This
approach might loose specificity in the case when there is some incongruence between the
two sources of information. For that reason we introduced a second approach, the
multichannel approach, where the two sources of data are not averaged together, but are
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considered as different directions to which the data to be classified might align to. We have
seen that this approach led to a better classification of the simulated GII cases.

The idea presented in this study can be extended to any type of tumor, especially to the rare
ones for which a biopsy is normally performed, and to any pattern recognition method/system
that makes use of a learning procedure or uses reference tissue models. This could be very
interesting for distinguishing between rare tumors and between rare and common tumors of
clinical importance. Such a system can afterwards be applied to classify other MRSI data non-
invasively, thereby avoiding the need of new biopsies.

7.6. Conclusions

Fusing multimodal sources of information coming from MRSI, HR-MAS and MRI
measurements represents a promising approach to provide improved detection and
classification of brain tumors since each source has its own advantages and limitations and,
therefore, they can complement each other. This approach can add value to the process of
tumor diagnosis, both for the situation when we are confronted with a lack of information
available for building a classifier as well as for the situation when we have access to different
sources of information and we use all these sources in building a robust classifier.
Additionally, results show that HR-MAS information can act as an added value in the process
of classifying MRSI data. An improvement in the accuracy of CCA is observed for all tissue
types when a limited number of MRSI data, needed to build the subspace model, are available
in the database and HR-MAS data are used as a complementary dataset. Moreover, our
simulation and in vivo studies show that when we have access to various types of information
describing the same population, combining multimodal heterogeneous sources of information
can also improve the performance of CCA in detecting correctly the tumor type and the tumor
region.
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Chapter 8

High resolution 'H NMR spectroscopy
for the classification of fetuses with
congenital diaphragmatic hernia

High resolution "H NMR spectroscopy is performed to compare amniotic fluid from fetuses
with congenital diaphragmatic hernia (CDH) undergoing temporary tracheal occlusion (TO)
or its reversal (rTO) against healthy controls. Signal processing techniques are applied to
improve the data quality. Then, feature reduction methods which explore the variability in the
data are separately considered in combination with automated classification techniques for
differentiating the complicated pregnancies. The potential of NMR spectroscopy in separating
CDH at TO from CDH at rTO is also investigated.

8.1 Introduction

Congenital diaphragmatic hernia (CDH) is a condition that can be targeted in utero, i.e., by
performing surgery on the fetus during pregnancy, hence, precise information on the possible
disease condition of the fetus is needed. In this study, we analyze, using high resolution 'H
NMR spectroscopy, the human amniotic fluid (AF) from fetuses with CDH and try to
differentiate between CDH cases at the time of undergoing temporary tracheal occlusion (TO)
with an inflatable balloon to stimulate lung development and CDH cases after reversal TO
against healthy controls. The purpose is to spot the potential and limitations of using NMR
spectroscopy in differentiating the CDH groups.

High-resolution NMR spectroscopy of human AF or fetal organs has the prospect of
becoming a valuable technique for the evaluation of fetal health and development. Previous
studies have already shown that NMR spectra of human AF can reflect fetal status and
development as well as maternal health. Metabolic correlations with disorders such as spina
bifida (Bock, 1994; Groenen et al., 2004), Down syndrome (Bock, 1994) and congenital
malformations (Graca et al., 2009) in fetuses and cystic fibrosis (Le Moyec, 1994) and
diabetes (McGowan, 1999) in mothers were reported. Further information on changes in
metabolic patterns related to fetal lung (Clifton et al., 2006; Pearce et al., 1993) and kidney
maturation (Bock, 1994) exist. Moreover normative values were suggested for the second and
third trimester (Cohen et al., 2009). Still, very limited information is available for comparing
normal and complicated pregnancies. Also a limited number of samples were usually



154

considered in the previous studies and only particular resonances in the NMR spectra were
exploited. Although it has recently been shown that at high field NMR spectroscopy up to 75
different compounds can be identified in human AF (Graca et al., 2008), for many minor
compounds, which were detected, no assignment could be achieved. This leaves out
potentially valuable spectral information, unknown a priori, and which could be exploited
when NMR spectroscopy is performed. Thus, in the proposed study, automatic feature
reduction methods, which do not imply prior knowledge, were considered. Principal
Component Analysis (PCA) (Pearson, 1901) and Multidimensional Scaling (MDS) (Borg and
Groenen, 2005) were separately applied to reduce the dimension of spectral patterns and
select the most relevant features. Then, classifiers were developed and tested for
differentiating the CDH groups. Different combinations of feature extraction methods and
classification techniques were applied.

8.2 Materials

84 AF samples from 54 healthy fetuses, 20 CDH cases at the time-point of TO and 10 CDH
fetuses at the reversal of TO were collected at the Department of Obstetrics and Gynecology,
University Hospital Gasthuisberg, Leuven, Belgium, from November, 2009 to April 2011.
The samples were acquired during invasive fetal procedures such as: amniocentesis for
healthy fetuses and at the moment of the TO intervention or during cesarian section for the
CDH fetuses. Only AF samples with normal fetal karyotype were used for NMR analysis and
no known infectious material was collected. Informed consent was obtained at all times and
the study was approved by the ethical committee of the KU Leuven.

The gestational age ranged from 15-38 weeks, 21-35 weeks and 31-35 weeks in fetuses of the
control, CDH at TO and CDH at TO reversal group, respectively. No first trimester samples
were included, as amniocentesis is not performed that early in gestation. Besides
amniocentesis, samples were gained during invasive fetal procedures as described for CDH or
cesarian sections. Only AF samples with normal fetal karyotype were used for NMR analysis
and no known infectious material was collected. Informed consent was obtained at all times
and the study was approved by the ethical committee of the KU Leuven.

High resolution '"H NMR spectra of AF were acquired at 37°C using an Avance 400 MHz
NMR spectrometer (Bruker Biospin, Rheinstetten, Germany) after diluting 0.4ml amniotic
fluid with 0.1ml D,O in a Smm NMR tube. The water signal was partially suppressed by
means of selective excitation by using pulse field gradients. One-dimensional spectra were
acquired with a spectral width of 12 ppm and using 16 k data points. Free induction decays
were averaged over 8 k accumulations. A relaxation delay of 2sec was allowed. An
exponential function was applied prior to Fourier transformation, resulting in a line
broadening of 0.1 Hz. NMR spectra were phase and baseline corrected using the Topspin
software (Bruker Biospin).
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8.3 Methods

The data are preprocessed, processed and statistically analyzed using Matlab platform. To
improve the quality of the spectra, an additional baseline correction, using splines, was
performed using the ‘msbackadj’ function from the Matlab Bioinformatics toolbox, followed
by frequency alignment and normalization with respect to external sodium 3-(trimethylsiyl)
propane sulfonate at 0.0 ppm. For the statistical study the magnitude spectra in the region
between 0.0 and 4.2 ppm were considered.

Due to the complexity of the spectra, since we have to deal with a very high number of peaks
reflecting the presence of different metabolites in the amniotic fluid, firstly a feature reduction
step is performed in order to extract relevant features that will be considered as inputs for
classifying the CDH groups. By considering only particular resonances we could leave out
potential valuable information. Moreover, no metabolic assignment was achieved so far for
CDH. Therefore, automatic feature reduction methods, which do not imply any prior
knowledge, are considered. Principal Component Analysis (PCA) (Pearson, 1901) and
Multidimensional Scaling (MDS) (Borg and Groenen, 2005) were separately applied on the
full region of interest of the magnitude spectrum to reduce the dimension of spectral patterns.

With PCA the data are linearly transformed for extracting a set of uncorrelated variables
(features), called principal components (PCs). Since in NMR spectroscopy it is assumed that
most of the variance in the original dataset can be explained by a limited number of PCs, the
method is commonly used as a feature reduction technique.

Multidimensional scaling (MDS), also known as Principal Coordinates Analysis (PCO), is a
more general projection method than PCA since it uses any distance matrix. PCO determines
a set of synthetic variables (feature) called principal coordinates (PCo(s)) that best represent
the pairwise distances between data. The number of PCo(s) to be extracted is specified a
priori. For this study the correlation distance was considered for computing the distance
matrix.

Binary classifiers are developed and tested for all pairwise differential diagnoses involving
control, all CDH cases, CDH at TO and CDH at rTO. Three different classification
algorithms, namely linear discriminant analysis (LDA), k-nearest-neighbor method (KNN)
and a linear support vector machine method (SVM), are considered and compared. The effect
of the feature extraction methods in combination with the proposed classifiers is investigated,
for different number of features. Since 98% of the variability of the data is described by the
first 10 PCs, for comparison with MDS method, the maximum number of features to be
considered was set to 10. To estimate the error of the classifiers, 10-fold cross-validation was
applied.
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8.4 Results and discussion

Results on the different combinations of feature extraction methods and classification
techniques considered for the study show that the best performance is obtained when using
the MDS features as input. With MDS all the considered binary classification tasks are solved
with high accuracy. Table 8.1 and 8.2 summarize the results for the pairwise classifiers in
combination with the first 6 PCs and 6 PCo(s) respectively, since for this number of features
we obtain the overall best performance.

The best classifier among control and the CDH groups achieves an accuracy up to 94%, when
considering KNN in combination with MDS. When having the PCs as input, for the proposed
classifiers the accuracy is mostly lower, around 75%. For the differentiation between the CDH
at TO and rTO, when using the PCo(s) as input features the accuracy reached 88%, in
contrast to PCA which reached an accuracy of 72%. Similar performance were obtained with
KNN and SVM algorithms.

Cohen et al., 2009 reported metabolic differences in the AF coming from the 2nd and 3rd
trimester, respectively. The data considered in this study also cover a wide range of
gestational ages raising the question whether the classifiers are not predisposed in predicting
the age rather than the disease. Because we do not have a homogeneous age distribution
through all the groups (the control group is represented by AF samples collected at the
beginning of the 2™ trimester of pregnancy, while the CDH groups contain AF samples
collected in the end of the 2™ trimester and the 3% trimester), a straightforward manner to
clarify this supposition was not possible. One approach would be to identify the spectral
regions that contribute to the successful classification; assign the respective metabolites and
compare them with the literature. In this way we could identify the metabolites that are prone
to alter due to the presence of the complication in the pregnancy and not due to the gestational
age. For differentiating between CDH at TO and at rTO, the cases are very close in
gestational age. On the other hand, maturation of organs as the lung will greatly increase in
the end of pregnancy; therefore, basically we cannot answer whether the observed differences
are due to age or disease.
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Table 8.1 Mean classification accuracy over 100 runs of
repeated random sampling for the differentiation of complicated
and control pregnancies, for 6 PCo(s). HC stands for healthy
controls, CDH TO for CDH fetuses at TO and CDH rTO
for CDH fetuses at TO reversal

IMDS+LDA MDS+KNN MDS+SVM
IHC vs all CDH 0.85 0.94 0.91
HC vs CDH_TO 0.86 0.94 0.90
HC vs CDH_rTO 0.81 0.94 0.91
CDH_TO vs CDH _rTO [0.86 0.88 0.86

Table 8.2 Mean classification accuracy over 100 runs of
repeated random sampling for the differentiation of complicated
and control pregnancies, for 6 PCs. HC stand for healthy
controls, CDH TO for CDH fetuses at TO and CDH rTO
for CDH fetuses at TO reversal

IPCA+LDA PCA+KNN [PCA+SVM
IHC vs all CDH 0.70 0.74 0.77
HC vs CDH_TO 0.68 0.75 0.76
HC vs CDH_rTO 0.70 0.77 0.78
CDH_TO vs CDH _rTO [0.64 0.72 0.72

Using automatic feature reduction methods, such as PCA and MDS, brings the advantages
that no prior knowledge with respect to the particular resonances that are relevant for the
given classification problems, is required. Additionally, by using only particular resonances,
we could leave out potential valuable information, while with PCA and MDS the data are
projected into a new space that explores the most variability and differences in the data. On
the other hand, although the extracted features reflect most of the variability and similarity or
dissimilarities in the data, the metabolic meaning is lost.

Using feature ranking methods, such as Kruskal-Wallis test, we can identify which features
are more likely to differentiate CDH. Based on the null hypothesis that all samples are drawn



158

from the same population, the test gives for each point in the spectra the measure of its weight
in separating between the groups, called rank. The higher the rank the more significant is the
feature in separating between the groups, while for a low rank value the feature does not
contribute in the separation, see Figure 8.1. A threshold to keep only the first n features with
the highest rank or only the features that have a rank higher than a certain value can be
imposed.
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Figure 8.1 Kruskal-Wallis test results in ranking of each point of the spectra for
differentiating CDH from control group. The first 50 spectral points with the highest rank are
highlighted with black-dotted lines.

8.5 Conclusions

Results show that dimensionality reduction methods in combination with automated
classifiers when analyzing '"H NMR spectra have a high potential in identifying CDH
pregnancies. Still, before drawing reliable conclusions, the age vs. disease problem is a major
limitation and needs further investigation. Overall we can conclude that NMR spectroscopy
can represent an attractive tool which in later clinical applications could be combined with
routine fetal magnetic resonance imaging and thus help to obtain a more detailed picture of
fetuses with CDH. The experiments proposed in this study represent an interesting investment
in future technologies. Moreover, these findings can then be further investigated for their
potential in diagnosis and prognosis of the disease. Deeper understanding of the
pathophysiology of CDH will be the basis for more effective therapies.
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Chapter 9

Conclusions and future work

In this chapter the main conclusions and contributions of this thesis are outlined. Then a few open

problems and possible leads to solve them are outlined.

9.1 Summary

Chapters 1-3 contain background material required in the thesis. In Chapter 1, firstly, the
basic concepts of NMR spectroscopy were presented and the NMR modalities which were
considered throughout the thesis were introduced. Thus, a theoretical overview of MR
imaging, MR spectroscopy, MR spectroscopic imaging and ex vivo high resolution MR
techniques such as HR-MAS was provided. The research presented in this thesis finds its
application in diagnosing brain tumors and abnormal pregnancies. Hence, a short overview of
these two medical case studies, underlying the potential of NMR techniques in their diagnosis
and prognosis was provided.

Before analyzing NMR spectroscopic data, several processing and preprocessing steps are
required in order to improve the quality of the data and to facilitate accurate classification. In
Chapter 2 an overview of the typical processing and preprocessing steps was given by
focusing on those techniques that are considered in the studies presented in this thesis. SNR
improvement, frequency alignment, phase, eddy currents and lineshape correction, water
suppression, baseline correction and normalization preprocessing methods were outlined.
Automatic feature extraction methods such as MDS and PCA, as well as quantification
methods that exploit the biomedical information embedded in the spectra, such as AQSES,
QUEST and LCModel were presented.

In Chapter 3 different classification algorithms considered throughout the studies presented in
this thesis were overviewed. The supervised classification methods K-nearest neighbor, linear
discriminant analysis, support vector machines and canonical correlation analysis are
presented along with the unsupervised cluster analysis and BSS methods such are NNMF,
ICA and CAMNS. Performance measure tests, such as Krzanovski-Lai index, the weighted
inter-intra index, Silhouette index, Homogeneity and Separation index, Kruskal-Wallis test
and Tukey multiple comparison were introduced.

Chapters 4-8 contain the main personal contributions of the thesis. In Chapter 4 an advanced
metabolite quantification method for MRSI data, AQSES-MRSI, in which the available
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spatial information is exploited, is presented. AQSES-MRSI uses an NLLS algorithm and
prior knowledge is included in the form of proximity constraints on the spectral parameters
within a grid, optimized starting values and a penalty term that promotes a spatially smooth
spectral parameter map is added to the fitting algorithm. AQSES-MRSI results on simulated
MRSI data with several types of disturbances and on short echo time in vivo proton MRSI
data shows improved accuracy of quantification compared to processing MRSI voxels on an
individual basis with methods such as AQSES, QUEST and LCModel. Overlapping peaks or
peaks of compounds present at low concentration can be better resolved than in single-voxel
approaches.

Chapter 5 is a study on the distinct histopathological tissue properties, such as viable tumor
cells, necrotic tissue or regions where the tumor infiltrates normal brain in gliomas. A cluster
analysis on HR-MAS recordings coming from patients with different grades of glial tumors is
presented and confronted with histopathology. The results when applying the method on sets
of metabolite concentrations and metabolite ratios show that with HR-MAS a strong
correlation between the histopathological tissue properties and the metabolic information are
obtained and that the metabolite concentration sets can better differentiate between the
considered histopathological tissue properties than the ratios of the metabolites to Cr. With
the proposed approach representative reference tissue models describing the metabolic
behavior are extracted for characterizing the intratumoral tissue properties. These models can
be considered as prior knowledge to other studies.

In Chapter 6 the problem of correctly identifying the distinct histopathological tissue
properties is further explored and blind source separation techniques are considered for
obtaining characteristic profiles for necrosis, highly cellular tumor and border tumor tissue,
and providing the contribution (abundance) of each of them to the profile of each spectrum.
Non-negative matrix factorization, convex analysis of non-negative sources and non-negative
independent component analysis methods are tested on ex-vivo HR-MAS. Since the ultimate
goal is to obtain a similar differentiation when using non-invasive methods, an extension of
the proposed approach to in vivo MRSI data is proposed. The results show that BSS can
reliably answer the problem of source separation and provide answers that are very close to
histopathology.

Chapter 7 describes a study using model-based canonical correlation analysis (CCA)
algorithm for the classification of short echo-time brain magnetic resonance spectroscopic
imaging (MRSI) when using, as prior knowledge, multimodal sources of information coming
from high resolution magic angle spinning (HR-MAS), MRSI and magnetic resonance
imaging (MRI), which are demographically heterogeneous and acquired using different
biomedical data acquisition protocols. An extensive simulation study on different scenarios
regarding multimodal data availability and data fusion approaches shows that that HR-MAS
information can act as an added value in the process of classifying MRSI data. The study is
extended to in vivo experiments and proves similar results.
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Chapter 8 proposes a pilot study for correlating metabolic information coming from high
resolution MRS with the congenital diaphragmatic hernia (CDH) condition in fetuses.
Automatic feature extraction methods as MDS and ICA in combination with LDA, SVM and
K-NN are considered for the goal of differentiating amniotic fluid from fetuses with CDH
undergoing temporary tracheal occlusion (TO) or its reversal (rTO) from healthy controls.

9.2 Future work

Data fusion

NMR spectroscopy, as shown also in this thesis, has a tremendous potential in improving the
diagnosis and prognosis of a large range of clinical conditions. Nowadays, MRI is routinely
considered for successfully identifying the brain tumor area and to some extent predicts the
tumor type. MR spectroscopy is still not commonly used for brain tumor diagnosis. This is
mainly due to the reluctance of the clinicians to the technique since interpreting spectroscopic
data requires special knowledge. Therefore, developing advanced classifiers to be embedded
in a friendly user interface is a key factor to the success of the method. Moreover, it is often
happening that during an in vivo NMR experiment various data are collected such as MRI
images of different contrast, DWI, DTI and MRSI. Analysing all these sources of information
separately is the common approach and is time expensive. Having advanced classifiers which
are able to fuse multimodal sources of information can improve the classification results and,
as shown in Chapter 7, one could simultaneously benefit from the different knowledge
embedded in MRI and spectroscopic data. An interesting future approach would be to develop
classifiers based on even more sources of information such as DTI, DWI, MRI and functional
MRI in combination with classical MRI and spectroscopy. Moreover, during the eTumour
project a very large database of different measurements including DNA microarray were
collected to study the brain tumors. Combining NMR spectroscopic information with gene
sequence information and trying to identify the correlation between these two different
techniques could lead to a better understanding of the disease.

Fusing multimodal sources of information could be an interesting lead to follow also for
improved metabolite quantification. As shown in Chapter 4, when quantifying multivoxel
MRSI data coming from brain tumors, including spatial knowledge improves the results.
Adding information from MRI could be an interesting track to further research. Thus, as
described in Chapter 4, AQSES-MRSI quantifies each voxel by considering information from
the neighboring voxel. Using MRI information one could redefine the neighboring area in a
more dynamic way. One way is to embed in the quantification advanced imaging
segmentation steps. Another approach would be to consider BSS methods as a quick way to
approximate the percentage of contribution of each tissue type to each voxel and use this
information to initialize the neighborhood areas prior to the quantification.
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BSS methods

Due to the heterogeneity of brain tumors, quantifying histopathological tissue properties
within the tumor area provides a better interpretation of the complexity of the disease. As
shown in this thesis, NNMF can resolve the partial volume effect and provide results close to
the histopathology and easily interpretable by clinicians. Additionally, these methods do not
require any training data. An interesting future application would be to consider NNMF
methods for an automatic delimitation of the necrotic area within the MRSI measurements
and identifying the infiltrative regions. To this aim, a more detailed study on the potential and
limitation of BSS methods in solving this problem, by comparing various NNMF
implementations could be an interesting future research work. Moreover, one may consider
more than one source of information when applying NNMF, and try to fuse spectral
information with imaging information from MRI, DTI and DWI data.

MRSI quantification

The multi-voxel quantification approach proposed in this thesis, AQSES-MRSI, is more
accurate than individually fitting each signal in the grid. Still, some issues must be further
studied, such as what smoothness measure is more appropriate for in vivo data, or how to
automatically safeguard against decreasing the constraint box too much; ideas from trust
region methods could be adapted for this purpose. Additionally, an extension of AQSES-
MRSI to 3D MRSI data still needs to be implemented. Moreover, although developed and
tested on brain data, AQSES-MRSI can be considered in quantifying other types of MRSI
measurements. Still, to do so, some adjustments and modifications in the algorithm might be
needed. For the quantification of prostate MRSI data one might have to deal with the coil
artifact. Thus, accounting for the decrease in metabolite intensities when far away from the
coil could improve the quantification of prostate MRSI data.

AF analysis

In Chapter 8 we propose a pilot study that shows that the metabolic information contained in
the AF coming from CDH fetuses reflects the status of the disease. Further research to
identify metabolites that are, as detected by MRS, differently existent in CDH compared to
non-CDH fetuses could help to define new markers and methods for diagnostic and
prognostic purposes in fetuses with CDH. Therefore, advanced feature selection methods that
allow identifying clinical relevant features could be considered and tested. To this aim, one
may analyse several automatic statistical methods such as Fisher discriminant criterion, the
Kruskal-Wallis test, Relief-F or an enhanced forward selection algorithm as described in
(Nikulin et al., 1998). Moreover, the study presented in Chapter 8 is part of larger project
which deals with other complicated pregnancies such as twin-twin transfusion syndrome
(TTTS). Since about this clinical condition little is known from the metabolic point of view, a
study to identify the potential of using MRS in the diagnosis and prognosis of TTTS could be
of high interest. To improve the classification results, clinical information (sex, age, etc) can
also be included. MRS, in contrast to other techniques can potentially be applied in a non-
invasive fashion and could give functional information about the fetus. Thus, an extension of
the results obtained on the ex vivo data to MRSI in vivo measurements is an interesting
approach for the future.
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